Advertisement

Following a Group of Targets in Large Environments

  • Christopher Vo
  • Sam McKay
  • Nikhil Garg
  • Jyh-Ming Lien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7660)

Abstract

The problem of following multiple coherent targets using a camera is called the group following problem. While camera tracking is a popular subject in literature, the group following problem has not gained much attention despite that there are many scenarios where it is desired for a moving sensor to maximize its visibility of a group of moving targets. In this work, we address the scalability issue by investigating the idea of cached visibility. We will discuss two camera motion planners called cached intelligent observers (cio). In our experimental results, we show that cached visibility provides better balance between efficiency and performance than existing methods, particularly in large complex environments.

Keywords

Motion Planning Camera Planning Group Following Visibility Scalability Incremental Methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandyopadhyay, T., Ang Jr., M.H., Hsu, D.: Motion Planning for 3-D Target Tracking among Obstacles. In: Kaneko, M., Nakamura, Y. (eds.) Robotics Research. STAR, vol. 66, pp. 267–279. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, T., Li, Y., Ang Jr., M., Hsu, D.: A greedy strategy for tracking a locally predictable target among obstacles. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2342–2347 (2006)Google Scholar
  3. 3.
    Bandyopadhyay, T., Li, Y., Ang Jr., M.H., Hsu, D.: Stealth Tracking of an Unpredictable Target Among Obstacles. In: Erdmann, M., Overmars, M., Hsu, D., van der Stappen, F. (eds.) Algorithmic Foundations of Robotics VI. STAR, vol. 17, pp. 43–58. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Becker, C., González-Baños, H., Latombe, J.C., Tomasi, C.: An Intelligent Observer. In: Khatib, O., Kenneth Salisbury, J. (eds.) Experimental Robotics IV. LNCIS, vol. 223, pp. 153–160. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Becker, C., González-Baños, H., Latombe, J.C., Tomasi, C.: An Intelligent Observer. In: Khatib, O., Kenneth Salisbury, J. (eds.) Experimental Robotics IV. LNCIS, vol. 223, pp. 153–160. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Bhattacharya, S., Candido, S., Hutchinson, S.: Motion strategies for surveillance. In: Proceedings of Robotics: Science and Systems, Atlanta, GA, USA (June 2007)Google Scholar
  7. 7.
    Bhattacharya, S., Hutchinson, S.: On the existence of nash equilibrium for a two-player pursuit-evasion game with visibility constraints. Int. J. of Rob. Res. 57, 251–265 (2009)Google Scholar
  8. 8.
    Christie, M., Normand, J.M.: A semantic space partitioning approach to virtual camera composition. Computer Graphics Forum 24(3), 247–256 (2005)CrossRefGoogle Scholar
  9. 9.
    Christie, M., Olivier, P., Normand, J.M.: Camera control in computer graphics. Computer Graphics Forum 27(8), 2197–2218 (2008)CrossRefGoogle Scholar
  10. 10.
    Geraerts, R.: Camera Planning in Virtual Environments Using the Corridor Map Method. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 194–206. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Goemans, O., Overmars, M.: Automatic Generation of Camera Motion to Track a Moving Guide. In: Erdmann, M., Overmars, M., Hsu, D., van der Stappen, F. (eds.) Algorithmic Foundations of Robotics VI. STAR, vol. 17, pp. 187–202. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    González-Baños, H., Lee, C.Y., Latombe, J.C.: Real-time combinatorial tracking of a target moving unpredictably among obstacles. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 2, pp. 1683–1690 (2002)Google Scholar
  13. 13.
    Harrison, J.F., Vo, C., Lien, J.-M.: Scalable and Robust Shepherding via Deformable Shapes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 218–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    LaValle, S., González-Baños, H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 731–736 (1997)Google Scholar
  15. 15.
    Lee, C.Y., González-Baños, H., Latombe, J.C.: Real-time tracking of an unpredictable target amidst unknown obstacles (2002)Google Scholar
  16. 16.
    Li, T.-Y., Cheng, C.-C.: Real-Time Camera Planning for Navigation in Virtual Environments. In: Butz, A., Fisher, B., Krüger, A., Olivier, P., Christie, M. (eds.) SG 2008. LNCS, vol. 5166, pp. 118–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Murrieta-Cid, R., Muppirala, T., Sarmiento, A., Bhattacharya, S., Hutchinson, S.: Surveillance Strategies for a Pursuer with Finite Sensor Range. The International Journal of Robotics Research 26(3), 233–253 (2007)CrossRefGoogle Scholar
  18. 18.
    Murrieta-Cid, R., Tovar, B., Hutchinson, S.: A sampling-based motion planning approach to maintain visibility of unpredictable targets. Auton. Robots 19(3), 285–300 (2005)CrossRefGoogle Scholar
  19. 19.
    Oskam, T., Sumner, R.W., Thuerey, N., Gross, M.: Visibility transition planning for dynamic camera control. In: SCA 2009: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 55–65 (2009)Google Scholar
  20. 20.
    Oskam, T., Sumner, R.W., Thuerey, N., Gross, M.: Visibility transition planning for dynamic camera control. In: SCA 2009: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 55–65 (2009)Google Scholar
  21. 21.
    Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In: Computer Graphics (SIGGRAPH 1987 Proceedings), vol. 21, pp. 25–34 (July 1987)Google Scholar
  22. 22.
    Rodriguez, S., Amato, N.: Behavior-based evacuation planning. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 350–355. IEEE (2010)Google Scholar
  23. 23.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters. The International Journal of Robotics Research 22(2), 99–116 (2003)CrossRefGoogle Scholar
  24. 24.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People Tracking with Mobile Robots Using Sample-Based Joint Probabilistic Data Association Filters. The International Journal of Robotics Research 22(2), 99–116 (2003)CrossRefGoogle Scholar
  25. 25.
    Vo, C., Lien, J.-M.: Following a Large Unpredictable Group of Targets among Obstacles. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 134–145. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Christopher Vo
    • 1
  • Sam McKay
    • 1
  • Nikhil Garg
    • 1
  • Jyh-Ming Lien
    • 1
  1. 1.George Mason UniversityUSA

Personalised recommendations