Advertisement

Using Optimal Control Methods to Generate Human Walking Motions

  • Martin L. Felis
  • Katja Mombaur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7660)

Abstract

The generation of realistic motions for articulated characters using physical simulation has been the focus of many research efforts. Numerous systems focus on creating real-time controllers that allow for believable motions of characters within games that often use reference trajectories that the character tries to replicate. In this paper we describe an off-line method that uses open-loop optimal-control schemes to generate bipedal walking motions for characters in 2D. The resulting motions could then be used as reference trajectories for character controllers. This approach allows us to obtain different styles of motions by using different objective criteria without the use of any prerecorded data. We present the optimal control problem formulation and the direct multiple shooting method that efficiently solves this problem.

Keywords

optimal control human walking rigid-body dynamics trajectory optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences 273(1603), 2861–2867 (2006)CrossRefGoogle Scholar
  2. 2.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of movement. IEEE Transactions on Biomedical Engineering 54(11), 1940–1950 (2007)CrossRefGoogle Scholar
  3. 3.
    Safonova, A., Hodgins, J.K.: Construction and optimal search of interpolated motion graphs. In: SIGGRAPH 2007: ACM SIGGRAPH 2007 Papers, p. 106. ACM, New York (2007)Google Scholar
  4. 4.
    Ren, C., Zhao, L., Safonova, A.: Human motion synthesis with optimization-based graphs. In: Computer Graphics Forum (Proc. of Eurographics 2010, Sweden), vol. 29 (2010)Google Scholar
  5. 5.
    Witkin, A., Kass, M.: Spacetime constraints. In: SIGGRAPH 1988: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, pp. 159–168. ACM, New York (1988)CrossRefGoogle Scholar
  6. 6.
    Popovic, Z., Witkin, A.: Physically based motion transformation. Computer Graphics (SIGGRAPH) (1999)Google Scholar
  7. 7.
    Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM Trans. Graph. 22(3), 417–426 (2003)CrossRefGoogle Scholar
  8. 8.
    Sulejmanpašić, A., Popović, J.: Adaptation of performed ballistic motion. ACM Trans. Graph. 24(1), 165–179 (2005)CrossRefGoogle Scholar
  9. 9.
    Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics. In: SIGGRAPH 1995: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 71–78. ACM, New York (1995)CrossRefGoogle Scholar
  10. 10.
    Safonova, A., Hodgins, J.K., Pollard, N.S.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM Trans. Graph. 23(3), 514–521 (2004)CrossRefGoogle Scholar
  11. 11.
    Wei, X., Min, J., Chai, J.: Physically valid statistical models for human motion generation. ACM Trans. Graph. 30(3), 19:1–19:10 (2011)Google Scholar
  12. 12.
    Sok, K.W., Kim, M., Lee, J.: Simulating biped behaviors from human motion data. ACM Transactions on Graphics (SIGGRAPH) 26(3) (2007)Google Scholar
  13. 13.
    Muico, U., Lee, Y., Popović, J., Popović, Z.: Contact-aware nonlinear control of dynamic characters. ACM Transactions on Graphics 28(3) (2009)Google Scholar
  14. 14.
    Yin, K., Loken, K., van de Panne, M.: Simbicon: Simple biped locomotion control. ACM Trans. Graph. 26(3), Article 105 (2007)Google Scholar
  15. 15.
    Wang, J.M., Fleet, D.J., Hertzmann, A.: Optimizing walking controllers for uncertain inputs and environments. ACM Trans. Graph. 29(4), 73:1–73:8 (2010)Google Scholar
  16. 16.
    Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. 29(4), 130:1–130:9 (2010)Google Scholar
  17. 17.
    de Lasa, M., Mordatch, I., Hertzmann, A.: Feature-Based Locomotion Controllers. ACM Transactions on Graphics 29(3) (2010)Google Scholar
  18. 18.
    Nakamura, Y., Mori, T., Aki Sato, M., Ishii, S.: Reinforcement learning for a biped robot based on a cpg-actor-critic method. Neural Networks 20(6), 723–735 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: A review. Neural Networks 21(4), 642–653 (2008)CrossRefGoogle Scholar
  20. 20.
    Schultz, G., Mombaur, K.: Modeling and optimal control of human-like running. To Appear in IEEE/ASME Transactions on Mechatronics (2010)Google Scholar
  21. 21.
    Mombaur, K.: Using optimization to create self-stable human-like running. Robotica 27, 321–330 (2009, published online June 2008)Google Scholar
  22. 22.
    de Leva, P.: Adjustments to zatsiorsky-seluyanov’s segment inertia parameters. Journal of Biomechanics 29(9), 1223–1230 (1996)CrossRefGoogle Scholar
  23. 23.
    Felis, M.L.: RBDL - the Rigid Body Dynamics Library (2012), http://rbdl.bitbucket.org
  24. 24.
    Leineweber, D.B., Bauer, I., Bock, H.G., Schlöder, J.P.: An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical aspects. Computers and Chemical Engineering 27, 157–166 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Martin L. Felis
    • 1
  • Katja Mombaur
    • 1
  1. 1.Optimization in Robotics and Biomechanics, Interdisciplinary Center for Scientific Computing (IWR)University of HeidelbergHeidelbergGermany

Personalised recommendations