Advertisement

A Ciphertext Policy Attribute-Based Encryption Scheme without Pairings

  • Jiang Zhang
  • Zhenfeng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7537)

Abstract

Sahai and Waters [34] proposed Attribute-Based Encryption (ABE) as a new paradigm of encryption algorithms that allow the sender to set a policy to describe who can read the secret data. In recent years, lots of attribute-based schemes appeared in literatures, but almost all the schemes, to the best of our knowledge, are constructed from pairings. In this work, we present a ciphertext policy attribute-based encryption (CP-ABE) scheme, which supports and-gates without pairings. Our scheme is defined on q-ary lattices, and has a very strong security proof based on worst-case hardness. More precisely, under the learning with errors (LWE) assumption, our CP-ABE scheme is secure against chosen plaintext attack in the selective access structure model. Though our scheme only encrypts one bit at a time, we point out that it can support multi-bit encryption by using a well-known technique. Besides, our result can be easily extended to ideal lattices for a better efficiency.

Keywords

Access Structure Ideal Lattice Cryptology ePrint Archive Choose Plaintext Attack Learn With Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Fuzzy identity based encryption from lattices. Cryptology ePrint Archive, Report 2011/414 (2011), http://eprint.iacr.org/
  4. 4.
    Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. Cryptology ePrint Archive, Report 2011/410 (2011), http://eprint.iacr.org/
  5. 5.
    Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC 1996, pp. 99–108. ACM, New York (1996)CrossRefGoogle Scholar
  6. 6.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  7. 7.
    Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009), http://eprint.iacr.org/
  8. 8.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, CCS 2007, pp. 456–465. ACM, New York (2007)CrossRefGoogle Scholar
  10. 10.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A Ciphertext-Policy Attribute-Based Encryption Scheme with Constant Ciphertext Length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008)Google Scholar
  12. 12.
    Dov Gordon, S., Katz, J., Vaikuntanathan, V.: A Group Signature Scheme from Lattice Assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded Ciphertext Policy Attribute Based Encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM, New York (2006)Google Scholar
  15. 15.
    Herranz, J., Laguillaumie, F., Ràfols, C.: Constant Size Ciphertexts in Threshold Attribute-Based Encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Ibraimi, L., Tang, Q., Hartel, P., Jonker, W.: Efficient and Provable Secure Ciphertext-Policy Attribute-Based Encryption Schemes. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 1–12. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Functional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Lewko, A., Waters, B.: Decentralizing Attribute-Based Encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
    Liang, X., Cao, Z., Lin, H., Xing, D.: Provably secure and efficient bounded ciphertext policy attribute based encryption. In: Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS 2009, pp. 343–352. ACM, New York (2009)Google Scholar
  20. 20.
    Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Lyubashevsky, V., Micciancio, D.: Generalized Compact Knapsacks Are Collision Resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Lyubashevsky, V., Micciancio, D.: Asymptotically Efficient Lattice-Based Digital Signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A Modest Proposal for FFT Hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 356–365 (2002)Google Scholar
  26. 26.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37, 267–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Nishide, T., Yoneyama, K., Ohta, K.: Attribute-Based Encryption with Partially Hidden Encryptor-Specified Access Structures. In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 333–342. ACM, New York (2009)Google Scholar
  29. 29.
    Peikert, C., Rosen, A.: Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 187–196. ACM, New York (2008)Google Scholar
  31. 31.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)CrossRefGoogle Scholar
  32. 32.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Rückert, M.: Lattice-Based Blind Signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient Public Key Encryption Based on Ideal Lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Waters, B.: Ciphertext-Policy Attribute-Based Encryption: An Expressive, Efficient, and Provably Secure Realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jiang Zhang
    • 1
  • Zhenfeng Zhang
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations