Advertisement

A Self-stabilizing Algorithm for Finding a Minimal K-Dominating Set in General Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7696)

Abstract

Since the publication of Dijkstra’s pioneering paper, a lot of self-stabilizing algorithms for computing dominating sets have been proposed in the literature. However, there is no self-stabilizing algorithm for the minimal k-dominating set (MKDS) in arbitrary graphs that works under a distributed daemon. The proposed algorithms for the minimal k-dominating set (MKDS) either work for trees (Kamei and Kakugawa [16]) or find a minimal 2-dominating set (Huang et al. [14,15]). In this paper, we propose a self-stabilizing algorithm for the minimal k-dominating set (MKDS) under a central daemon model when operating in any general network. We further prove that the worst case convergence time of the algorithm from any arbitrary initial state is O(n 2) steps where n is the number of nodes in the network.

Keywords

Self-stabilizing algorithm Minimal k-dominating set Central daemon model General network Convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beauquier, J., Datta, A.K., Gradinariu, M., Magniette, F.: Self-Stabilizing Local Mutual Exclusion and Daemon Refinement. In: Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 223–237. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Dijkstra, E.W.: Self-stabilizing Systems in Spite of Distributed Control. ACM. Commun. 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: A Simple Fixpoint Argument Without the Restriction to Continuity. J. Acta. Inf. 23(1), 1–7 (1986)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Gairing, M., Hedetniemi, S.T., Kristiansen, P., McRae, A.A.: Self-Stabilizing Algorithms for {k}-Domination. In: Huang, S.-T., Herman, T. (eds.) SSS 2003. LNCS, vol. 2704, pp. 49–60. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: A self-stabilizing distributed algorithm for minimal total domination in an arbitrary system grap. In: 17th International Symposium on Parallel and Distributed Processing, pp. 485–488. IEEE Press, Nice (2003)Google Scholar
  8. 8.
    Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K., Xu, Z.: Self-stabilizing graph protocols. Parallel Processing Letters 18(1), 189–199 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Guellati, N., Kheddouci, H.: A survey on self-stabilizing algorithms for independence, domination, coloring, and matching in graphs. Journal of Parallel and Distributed Computing 70(4), 406–415 (2010)zbMATHCrossRefGoogle Scholar
  10. 10.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998)zbMATHGoogle Scholar
  11. 11.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998)Google Scholar
  12. 12.
    Hedetniemi, S.M., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing algorithms for minimal dominating sets and maximal independent sets. Computer Mathematics and Applications 46(5-6), 805–811 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Information Processing Letters 87(5), 251–255 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Huang, T.C., Chen, C.Y., Wang, C.P.: A Linear-Time Self-Stabilizing Algorithm for the Minimal 2-Dominating Set Problem in General Networks. Inf. Sci. Eng. 24(1), 175–187 (2008)MathSciNetGoogle Scholar
  15. 15.
    Huang, T.C., Lin, J.C., Chen, C.Y., Wang, C.P.: A self-stabilizing algorithm for finding a minimal 2-dominating set assuming the distributed demon model. Computers and Mathematics with Applications 54(3), 350–356 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kamei, S., Kakugawa, H.: A self-stabilizing algorithm for the distributed minimal k-redundant dominating set problem in tree network. In: 4th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 720–724. IEEE Press, Chengdu (2003)Google Scholar
  17. 17.
    Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A New Self-Stabilizing Maximal Matching Algorithm. Theoretical Computer Science. 410(14), 1336–1345 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nesterenko, M., Arora, A.: Stabilization-Preserving Atomicity Refinement. Journal of Parallel and Distributed Computing 62(5), 766–791 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Maths and ComputingUniversity of Southern QueenslandAustralia

Personalised recommendations