Advertisement

Mineralogie pp 335-341 | Cite as

Pegmatite

  • Martin Okrusch
  • Siegfried Matthes
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Pegmatite sind sehr grobkörnige bis riesenkörnige magmatische Gesteine, in denen Einzelkristalle bis mehrere Meter groß werden können. Sie bilden sich aus silikatischen Restschmelzen, die an H2O, F, B2O3 und anderen leichtflüchtigen Komponenten angereichert sind. Prinzipiell kann jeder Plutonit als Pegmatit ausgebildet sein. So hatten wir bereits das Merensky-Reef im Bushveld-Komplex als Beispiel für einen mafischen bis ultramafischen Pegmatit kennen gelernt (Abschn. 21.3.1, S. 328ff ).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  1. CËerný P (Hrsg) (1982) Short course in granitic pegmatites in science and industry. Mineral Assoc Canada, WinnipegGoogle Scholar
  2. .erný P, Ercit TS (2005) The classification of granitic pegmatites revisited. Canad Mineral 43:2005–2026CrossRefGoogle Scholar
  3. .erný P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100th Anniversary Vol. p 337–370Google Scholar
  4. .erný P, London D, Novák M (2012) Granitic pegmatites as reflections of their sources. Elements 8:289–294CrossRefGoogle Scholar
  5. Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: Sources and processes. Elements 8:347–353CrossRefGoogle Scholar
  6. Evans AM (1993) Ore geology and industrial minerals, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  7. Glover AS, Rogers WZ, Barton JE (2012) Granitic pegmatites: Storehouse of industrial minerals. Elements 8:269–273CrossRefGoogle Scholar
  8. Grew ES (ed) (2002) Beryllium – mineralogy, petrology, geochemistry. Rev Mineral Geochem 50Google Scholar
  9. Grew ES, Anovitz LM (eds) (1996) Boron – mineralogy, petrology and geochemistry. Rev Mineral 33Google Scholar
  10. Linnen RL, Van Lichtervelde M, .erný P (2012) Granitic pegmatites as sources of strategic minerals. Elements 8:275–280CrossRefGoogle Scholar
  11. London D (2005) Granitic pegmatites: An assessment of current concepts and directions for the future. Lithos 80:281–303CrossRefGoogle Scholar
  12. London D, Kontak DJ (2012) Granitic pematites: Scientific wonders and economic bonanzas. Elements 8:257–261CrossRefGoogle Scholar
  13. London D, Morgan VI GB (2012) The pegmatite puzzle. Elements 8:263–268CrossRefGoogle Scholar
  14. Martin RF, De Vito C (2005) The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting. Canad Mineral 43:2027–2048CrossRefGoogle Scholar
  15. Schneiderhöhn H (1961) Die Erzlagerstätten der Erde, Bd II: Die Pegmatite. Gustav Fischer, StuttgartGoogle Scholar
  16. Schneiderhöhn H (1962) Erzlagerstätten. Kurzvorlesungen zur Einführung und Wiederholung, 4. Aufl. Gustav Fischer, StuttgartGoogle Scholar
  17. Simmons WB, Pezzotta F, Shigley JE, Beurlen H (2012) Granitic pegmatites: as sources of colored gemstones. Elements 8:281–287CrossRefGoogle Scholar
  18. Thomas R, Davidson P, Beurlen H (2012) The competing models for the origin and internal evolution of granitic pegmatites in the light of melt and fluid inclusion research. Mineral Petrol 106:55–73CrossRefGoogle Scholar

Zitierte Literatur

  1. Jahns RH, Burnham CW (1969) Experimental study of pegmatite enesis. I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864CrossRefGoogle Scholar
  2. London D (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Canad Mineral 30:499–540Google Scholar
  3. London D, Morgan GB, Hervig RL (1989) Vapor-undersaturated experiments with Macusani glass +H2O at 200 MPa and the internal differentiation of pegmatites. Contrib Mineral Petrol 102:1–17CrossRefGoogle Scholar
  4. Melcher F und BGR-Gruppe Coltan (2008) Herkunftsnachweis von „Blutcoltan“ aus Zentralafrika. GMIT, Geowiss Mitt 31:18–20Google Scholar
  5. Paillat O, Elphick SC, Brown WL (1992) The solubility of water in NaAlSi3 O8 melts: A re-examination of Ab–H2O phase relationships and critical behaviour at high pressures. Contrib Mineral Petrol 112:490–500CrossRefGoogle Scholar
  6. Rickers K, Thomas R, Heinrich W (2006) The behaviour of trace elements during the chemical evolution of the H2O-, B-, and Frich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: A SXFR study of melt and fluid inclusions. Mineral Depos 41:229–245CrossRefGoogle Scholar
  7. Sowerby JR, Keppler H (2002) The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system. Contrib Mineral Petrol 143:32–37CrossRefGoogle Scholar
  8. Thomas R, Webster JD, Heinrich W (2000) Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure. Contrib Mineral Petrol 139:394–401CrossRefGoogle Scholar
  9. Thomas R, Förster H-J, Heinrich W (2003) The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study. Contrib Mineral Petrol 144:457–472CrossRefGoogle Scholar
  10. Whitney JA (1975) The effects of pressure, temperature, and XH2O on phase assemblages in four synthetic rock compositions. J Geol 83:1–27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Univ. Würzburg Mineralogisches InstitutWürzburgDeutschland
  2. 2.Inst. MineralogieUniv. Würzburg Fak. GeowissenschaftenWürzburgDeutschland

Personalised recommendations