Skip to main content

CRISPR-Cas Systems to Probe Ecological Diversity and Host–Viral Interactions

Abstract

A key feature of the CRISPR-Cas defense system is the ability of the host to rapidly acquire novel spacers from invasive foreign genetic elements such as plasmids, viruses, or transposons. Consequently, host CRISPR loci have the potential to provide time-resolved information about exposure to foreign genetic elements as well as fine-scale ecological diversity. Furthermore, viral genomes can mutate rapidly, allowing viruses to circumvent the host CRISPR-encoded immunity system, which relies on close matches between spacers and incoming nucleic acids. Thus, CRISPR-Cas systems may drive complex, coevolving relationships between bacteria or archaea and viruses. We discuss how ecologically based approaches, in both natural and experimental systems, provide unique insights into host and viral diversity and horizontal gene transfer of CRISPR loci. We critically review recent attempts to model host–viral coevolutionary dynamics in the context of CRISPR loci. Finally, we highlight the future directions in which experimental analyses of host–viral coevolution can be fruitfully combined with theoretical approaches.

Keywords

  • strain-specific spacers

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34657-6_9
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34657-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5

References

  • Abedon ST (2009) Phage evolution and ecology. Adv Appl Microbiol 67:1–45

    PubMed  CrossRef  CAS  Google Scholar 

  • Anderson RE, Brazelton WJ et al (2011a) Is the genetic landscape of the deep subsurface biosphere affected by viruses? Front Microbiol 2:219

    Google Scholar 

  • Anderson RE, Brazelton WJ et al. (2011b) Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage. FEMS Microbiol Ecol 77(1):120−133

    CrossRef  CAS  Google Scholar 

  • Andersson AF, Banfield JF (2008) Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320(5879):1047–1050

    PubMed  CrossRef  CAS  Google Scholar 

  • Angly FE, Willner D et al (2009) The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 5(12):e1000593

    PubMed  CrossRef  Google Scholar 

  • Barrangou R, Fremaux C et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    PubMed  CrossRef  CAS  Google Scholar 

  • Berg Miller ME, Yeoman CJ et al. (2012) Phage-bacteria relationships and CRISPR elements revealed by a metagenomic survey of the rumen microbiome. Environ Microbiol 14:207–227

    PubMed  CrossRef  Google Scholar 

  • Bhaya D, Davison M et al (2011) CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297

    PubMed  CrossRef  CAS  Google Scholar 

  • Bhaya D, Grossman AR et al (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1(8):703–713

    PubMed  CrossRef  CAS  Google Scholar 

  • Bikard D, Marraffini LA (2012) Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol 24:15−20

    PubMed  CrossRef  CAS  Google Scholar 

  • Blainey PC, Mosier AC et al (2011) Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS One 6(2):e16626

    PubMed  CrossRef  CAS  Google Scholar 

  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol 13(6):278–284

    PubMed  CrossRef  CAS  Google Scholar 

  • Breitbart M, Wegley L et al (2004) Phage community dynamics in hot springs. Appl Environ Microbiol 70(3):1633–1640

    PubMed  CrossRef  CAS  Google Scholar 

  • Brouns SJ, Jore MM et al (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891):960–964

    PubMed  CrossRef  CAS  Google Scholar 

  • Cady KC, White AS et al (2011) Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical pseudomonas aeruginosa isolates. Microbiology 157(Pt 2):430–437

    PubMed  CrossRef  CAS  Google Scholar 

  • Chakraborty S, Snijders AP et al (2010) Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol 56(3):878–887

    PubMed  CrossRef  CAS  Google Scholar 

  • Childs LM, Held NL et al. (2012) Multi-scale model of CRISPR-induced coevolutionary dynamics: diversification at the interface of Lamarck and Darwin. Evolution 66(7):2015–2029

    PubMed  CrossRef  Google Scholar 

  • Cui Y, Li Y et al (2008) Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS One 3(7):e2652

    PubMed  CrossRef  Google Scholar 

  • Davison M, Treangen TJ et al. (2012) Analysis of virome diversity in mixed microbial communities using CRISPR spacers. In preparation

    Google Scholar 

  • Delaney NF, Balenger S et al (2012) Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet 8(2):e1002511

    PubMed  CrossRef  CAS  Google Scholar 

  • Deveau H, Barrangou R et al (2008) Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190(4):1390–1400

    PubMed  CrossRef  CAS  Google Scholar 

  • Deveau H, Garneau JE et al (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    PubMed  CrossRef  CAS  Google Scholar 

  • Diez-Villasenor C, Almendros C et al (2010) Diversity of CRISPR loci in Escherichia coli. Microbiology 156(Pt 5):1351–1361

    PubMed  CrossRef  CAS  Google Scholar 

  • Dinsdale EA, Edwards RA et al (2008) Functional metagenomic profiling of nine biomes. Nature 452(7187):629–632

    PubMed  CrossRef  CAS  Google Scholar 

  • Edgar R, Qimron U (2010) The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J Bacteriol 192(23):6291–6294

    PubMed  CrossRef  CAS  Google Scholar 

  • Forde SE, Beardmore RE et al (2008) Understanding the limits to generalizability of experimental evolutionary models. Nature 455(7210):220–223

    PubMed  CrossRef  CAS  Google Scholar 

  • Fricke WF, Mammel MK et al (2011) Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193(14):3556–3568

    PubMed  CrossRef  CAS  Google Scholar 

  • Garcia-Heredia I, Martin-Cuadrado AB et al (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7(3):e33802

    PubMed  CrossRef  CAS  Google Scholar 

  • Garneau JE, Dupuis ME et al (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71

    PubMed  CrossRef  CAS  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3(1):347–371

    PubMed  CrossRef  Google Scholar 

  • Godde JS, Bickerton A (2006) The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J Mol Evol 62(6):718–729

    PubMed  CrossRef  CAS  Google Scholar 

  • Grissa I, Bouchon P et al (2008) On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie 90(4):660–668

    PubMed  CrossRef  CAS  Google Scholar 

  • Grissa I, Vergnaud G et al. (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35(Web Server issue): W52-57

    Google Scholar 

  • Haerter JO, Sneppen K (2012) Spatial Structure and lamarckian adaptation explain extreme genetic diversity at CRISPR locus. MBio 3(4):e00126-12

    PubMed  CrossRef  Google Scholar 

  • Haerter JO, Trusina A et al (2011) Targeted bacterial immunity buffers phage diversity. J Virol 85(20):10554–10560

    PubMed  CrossRef  CAS  Google Scholar 

  • Haft DH, Selengut J et al (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1(6):e60

    PubMed  CrossRef  Google Scholar 

  • Hale CR, Zhao P et al (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139(5):945–956

    PubMed  CrossRef  CAS  Google Scholar 

  • Hambly E, Suttle CA (2005) The viriosphere, diversity, and genetic exchange within phage communities. Curr Opin Microbiol 8(4):444–450

    PubMed  CrossRef  CAS  Google Scholar 

  • He J, Deem MW (2010) Heterogeneous diversity of spacers within CRISPR (clustered regularly interspaced short palindromic repeats). Phys Rev Lett 105(12):128102

    PubMed  CrossRef  Google Scholar 

  • Heidelberg JF, Nelson WC et al (2009) Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS One 4(1):e4169

    PubMed  CrossRef  Google Scholar 

  • Held NL, Herrera A et al (2010) CRISPR associated diversity within a population of Sulfolobus islandicus. PLoS One 5(9):e12988

    PubMed  CrossRef  Google Scholar 

  • Held NL, Whitaker RJ (2009) Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ Microbiol 11(2):457–466

    PubMed  CrossRef  CAS  Google Scholar 

  • Horvath P, Coute-Monvoisin AC et al (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131(1):62–70

    PubMed  CrossRef  CAS  Google Scholar 

  • Horvath P, Romero DA et al (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412

    PubMed  CrossRef  CAS  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    PubMed  CrossRef  CAS  Google Scholar 

  • Kerr B, Riley MA et al (2002) Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418(6894):171–174

    PubMed  CrossRef  CAS  Google Scholar 

  • Krupovic M, Prangishvili D et al (2011) Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 75(4):610–635

    PubMed  CrossRef  Google Scholar 

  • Kunin V, He S et al (2008) A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res 18(2):293–297

    PubMed  CrossRef  CAS  Google Scholar 

  • Kunin V, Sorek R et al (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8(4):R61

    PubMed  CrossRef  Google Scholar 

  • Labrie SJ, Samson JE et al (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    PubMed  CrossRef  CAS  Google Scholar 

  • Levin BR (2010) Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet 6(10):e1001171

    PubMed  CrossRef  Google Scholar 

  • Levin BR, Stewart FM et al (1977) Resource-limited growth, competition and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111:3–24

    CrossRef  Google Scholar 

  • Liu F, Barrangou R et al (2011) Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol 77(6):1946–1956

    PubMed  CrossRef  CAS  Google Scholar 

  • Lopez-Bueno A, Tamames J et al (2009) High diversity of the viral community from an Antarctic lake. Science 326(5954):858–861

    PubMed  CrossRef  CAS  Google Scholar 

  • Makarova KS, Haft DH et al (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9(6):467–477

    PubMed  CrossRef  CAS  Google Scholar 

  • Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    PubMed  CrossRef  CAS  Google Scholar 

  • Mojica FJ, Diez-Villasenor C et al (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155(Pt 3):733–740

    PubMed  CrossRef  CAS  Google Scholar 

  • Mokili JL, Rohwer F et al (2012) Metagenomics and future perspectives in virus discovery. Curr Opin Virol 2(1):63–77

    PubMed  CrossRef  CAS  Google Scholar 

  • Nowak MA, May RM (2000) Virus Dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Nozawa T, Furukawa N et al (2011) CRISPR inhibition of prophage acquisition in Streptococcus pyogenes. PLoS ONE 6(5):e19543

    PubMed  CrossRef  CAS  Google Scholar 

  • Pignatelli M, Aparicio G et al (2008) Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 24(18):2124–2125

    PubMed  CrossRef  CAS  Google Scholar 

  • Portillo MC, Gonzalez JM (2009) CRISPR elements in the thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus. J Appl Genet 50(4):421–430

    PubMed  CrossRef  CAS  Google Scholar 

  • Pride DT, Sun CL et al (2011) Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res 21(1):126–136

    PubMed  CrossRef  CAS  Google Scholar 

  • Reyes A, Haynes M et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466(7304):334–338

    PubMed  CrossRef  CAS  Google Scholar 

  • Rezzonico F, Smits TH et al (2011) Diversity, evolution, and functionality of clustered regularly interspaced short palindromic repeat (CRISPR) regions in the fire blight pathogen Erwinia amylovora. Appl Environ Microbiol 77(11):3819–3829

    PubMed  CrossRef  CAS  Google Scholar 

  • Rho M, Wu YW et al (2012) Diverse CRISPRs evolving in human microbiomes. PLoS Genet 8(6):e1002441

    PubMed  CrossRef  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD et al (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38(1):525–552

    PubMed  CrossRef  CAS  Google Scholar 

  • Rodriguez-Brito B, Li L et al (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4(6):739–751

    PubMed  CrossRef  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB et al (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7(11):828–836

    PubMed  CrossRef  CAS  Google Scholar 

  • Rohwer F (2003) Global phage diversity. Cell 113(2):141

    PubMed  CrossRef  CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459(7244):207–212

    PubMed  CrossRef  CAS  Google Scholar 

  • Rosario K, Marinov M et al (2011) Dragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera). J Gen Virol 92(Pt 6):1302–1308

    PubMed  CrossRef  CAS  Google Scholar 

  • Rousseau C, Gonnet M et al (2009) CRISPI: a CRISPR interactive database. Bioinformatics 25(24):3317–3318

    PubMed  CrossRef  CAS  Google Scholar 

  • Schoenfeld T, Patterson M et al (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74(13):4164–4174

    PubMed  CrossRef  CAS  Google Scholar 

  • Shah SA, Garrett RA (2011) CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol 162(1):27–38

    PubMed  CrossRef  CAS  Google Scholar 

  • Singh J, Behal A et al (2009) Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol J 4(4):480–494

    PubMed  CrossRef  CAS  Google Scholar 

  • Sinkunas T, Gasiunas G et al (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342

    PubMed  CrossRef  CAS  Google Scholar 

  • Snyder JC, Bateson MM et al (2010) Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples. Appl Environ Microbiol 76(21):7251–7258

    PubMed  CrossRef  CAS  Google Scholar 

  • Sorokin VA, Gelfand MS et al (2010) Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome. Appl Environ Microbiol 76(7):2136–2144

    PubMed  CrossRef  CAS  Google Scholar 

  • Stern A, Keren L et al (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26(8):335–340

    PubMed  CrossRef  CAS  Google Scholar 

  • Stern A, Mick E et al. (2012) CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome. Genome Res 22(10):1985–1994

    PubMed  CrossRef  CAS  Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437(7057):356–361

    PubMed  CrossRef  CAS  Google Scholar 

  • Tadmor AD, Ottesen EA et al (2011) Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333(6038):58–62

    PubMed  CrossRef  CAS  Google Scholar 

  • Thingstad TF (2000) Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems. Limnol Oceanogr 45(6):1320–1328

    CrossRef  Google Scholar 

  • Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat Microb Ecol 13(1):19–27

    CrossRef  Google Scholar 

  • Touchon M, Charpentier S et al (2011) CRISPR distribution within the Escherichia coli species is not suggestive of immune-associated diversifying selection. J Bacteriol 193(10):2460–2467

    PubMed  CrossRef  CAS  Google Scholar 

  • Tyson GW, Banfield JF (2008) Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10(1):200–207

    PubMed  CAS  Google Scholar 

  • Weinberger A, Sun C et al. (2012) Persisting viral sequences shape CRISPR-based immunity. PLoS Comput Biol 8(4):e1002475

    PubMed  CrossRef  CAS  Google Scholar 

  • Weitz JS, Hartman H et al (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci USA 102(27):9535–9540

    PubMed  CrossRef  CAS  Google Scholar 

  • Willner D, Thurber RV et al (2009) Metagenomic signatures of 86 microbial and viral metagenomes. Environ Microbiol 11(7):1752–1766

    PubMed  CrossRef  CAS  Google Scholar 

  • Winter C, Bouvier T et al (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74(1):42–57

    PubMed  CrossRef  CAS  Google Scholar 

  • Yilmaz S, Singh AK (2012) Single cell genome sequencing. Curr Opin Biotechnol 23(3):437–443

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgments

NLH and RJW acknowledge support from NSF DEB-0816885. DB and MD acknowledge support from the NSF, The Carnegie Institution of Science and Stanford University. JSW acknowledges the support of a grant from the James S. McDonnell Foundation. JSW holds a Career Award at the Scientific Interface from the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devaki Bhaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Held, N.L., Childs, L.M., Davison, M., Weitz, J.S., Whitaker, R.J., Bhaya, D. (2013). CRISPR-Cas Systems to Probe Ecological Diversity and Host–Viral Interactions. In: Barrangou, R., van der Oost, J. (eds) CRISPR-Cas Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34657-6_9

Download citation