Skip to main content

Pattern Recognition and Monte-CarloTree Search for Go Gaming Better Automation

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 7637)

Abstract

Go gaming automation is AI relevant because during a match the search space is enormous and the game tree size is around10360, versus the 10123 for Chess. Thus, finding out methods providing efficient solutions to, is truly relevant. The Monte-Carlo-based approaches have leading Go gaming automation but efficiency is distant: to strengthen on efficiency, a hybrid automated Go player Neural-Networks-based for learning and recognition on tactics/strategic patterns, in average, during the first 2/3 parts of a match is introduced; by the remaining match’s part it uses RAVE Monte-Carlo Tree Search (MCTS). Results on the precision of pattern recognition and a comparison against competitive automated Go players are presented.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, K., Chen, Z.: Static Analysis of Life and Death in the Game of Go. Information Sciences 121(1), 113–134 (1999)

    Article  Google Scholar 

  2. Allis, L.V.: Searching for Solutions in Games and Artificial Intelligence. PhD Thesis. University of Limburg, The Netherlands (1994)

    Google Scholar 

  3. McCarthy, J.: AI as sport. Science 276(5318), 1518–1519 (1997)

    Article  Google Scholar 

  4. Benson, D.B.: Life in the game of Go. Information Sciences 10(2), 17–29 (1976)

    Article  MathSciNet  Google Scholar 

  5. Yoshiaki, N.: Strategic Concepts of Go. Ishi Press (1972)

    Google Scholar 

  6. Müller, M.: Computer Go. Artificial Intelligence 134(1), 145–179 (2002)

    Article  MATH  Google Scholar 

  7. Richards, N., Moriarty, D.E., Miikkulainen, R.: Evolving Neural Networks to Play Go. Applied Intelligence 8(1), 85–96 (1998)

    Article  Google Scholar 

  8. van der Werf, E.C.D., van den Herik, H.J., Uiterwijk, J.W.H.M.: Learning to Estimate Potential Territory in the Game of Go. In: van den Herik, H.J., Björnsson, Y., Netanyahu, N.S. (eds.) CG 2004. LNCS, vol. 3846, pp. 81–96. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Bouzy, B., Cazenave, T.: Computer Go(An AI Oriented Survey. Artificial Intelligence 132(1), 39–103 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahl, F.A.: Honte, a Go-Playing Program Using Neural Nets. Machines that Learn to Play Games, pp. 205–223. Nova Science Publishers, Inc. (2001)

    Google Scholar 

  11. Jianming, L., Difei, Z., Rui, L.: Improve Go AI based on BP-Neural Network. In: 2008 IEEE Conference on Cybernetics and Intelligent Systems (CIS 2008), pp. 487–490. IEEE (2008)

    Google Scholar 

  12. Browne, C.B., Powley, E., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–49 (2012)

    Article  Google Scholar 

  13. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo Tree Search A New Framework for Game AI. In: 4th Artificial Intelligence Interactive Digital Entertainment Conference (AIIDE 2008), pp. 216–217. AAAI (2008)

    Google Scholar 

  14. Gelly, S., Silver, D.: Monte-Carlo Tree Search and Rapid Action Value Estimation in Computer Go. Artificial Intelligence 175(11), 1856–1875 (2011)

    Article  MathSciNet  Google Scholar 

  15. Gelly, S., Kocsis, L., Schoenauer, M., Sebag, M., Silver, D., Szepesvari, C., Teytaud, O.: The Grand Challenge of Computer Go Monte Carlo Tree Search and Extensions. Communication of the ACM 55(3), 106–113 (2012)

    Article  Google Scholar 

  16. Berlekamp, E.R., Wolfe, D.: Mathematical Go Chilling Gets the Last Point. A K Peters Ltd. (1997)

    Google Scholar 

  17. Yee, A., Alvarado, M.: Formal Language and Reasoning for Playing Go. In: 7th Latin American Workshop on Logic / Languages, Algorithms and New Methods of Reasoning (LANMR 2011). CEUR Workshop Proceedings, pp. 125–132 (2011)

    Google Scholar 

  18. Shi-Jim, Y., Tai-Ning, Y., Chang, C., Shun-Chin, H.: Pattern Matching in Go Game Records. In: 2nd International Conference on Innovative Computing, Information and Control (ICICIC 2007), pp. 297:14. IEEE (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yee, A., Alvarado, M. (2012). Pattern Recognition and Monte-CarloTree Search for Go Gaming Better Automation. In: Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds) Advances in Artificial Intelligence – IBERAMIA 2012. IBERAMIA 2012. Lecture Notes in Computer Science(), vol 7637. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34654-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34654-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34653-8

  • Online ISBN: 978-3-642-34654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics