Adaptive Splitting and Selection Algorithm for Classification of Breast Cytology Images

  • Bartosz Krawczyk
  • Paweł Filipczuk
  • Michał Woźniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)

Abstract

The article presents an application of Adaptive Splitting and Selection (AdaSS) classifier in the medical decision support system for breast cancer diagnosis. Apart from the canonical malignant versus non-malignant problem we introduced a third class - fibroadenoma, which is a benign tumor of the breast often occurring in women. Medical images are delivered by the Regional Hospital in Zielona Góra, Poland. For the process of segmentation and feature extraction a mixture of Gaussians is used. AdaSS is a combined classifier, based on an evolutionary splitting of feature space into clusters. To increase the overall accuracy of the classification we propose to add a feature selection step to the optimization criterion of the native AdaSS algorithm. Experimental investigation proves that the introduced method is more accurate than previously used classification approaches.

Keywords

machine learning multiple classifier system clustering and selection evolutionary algorithm breast cancer computer-aided diagnostics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–38 (1977)MathSciNetMATHGoogle Scholar
  2. 2.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2001)MATHGoogle Scholar
  3. 3.
    Filipczuk, P., Kowal, M., Marciniak, A.: Feature selection for breast cancer malignancy classification problem. J. Medical Informatics & Technologies 15, 193–199 (2010)Google Scholar
  4. 4.
    Gupta, M.R., Chen, Y.: Theory and use of the em algorithm. Foundations and Trends in Signal Processing 4(3), 224–292 (2010)Google Scholar
  5. 5.
    Hrebień, M., Steć, P., Obuchowicz, A., Nieczkowski, T.: Segmentation of breast cancer fine needle biopsy cytological images. Int. J. Appl. Math. and Comp. Sci. 18(2), 159–170 (2010)CrossRefGoogle Scholar
  6. 6.
    Jackowski, K., Wozniak, M.: Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas. Pattern Analysis and Applications 12(4), 415–425 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31, 264–323 (1999)CrossRefGoogle Scholar
  8. 8.
    Jeleń, Ł., Fevens, T., Krzyżak, A.: Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. Int. J. Appl. Math. and Comp. Sci. 18(1), 75–83 (2010)Google Scholar
  9. 9.
    Krawczyk, B., Woźniak, M.: Designing Cost-Sensitive Ensemble – Genetic Approach. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 3. AISC, vol. 102, pp. 227–234. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Kuncheva, L.I.: Clustering-and-selection model for classifier combination. In: Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, vol. 1, pp. 185–188 (2000)Google Scholar
  11. 11.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience (2004)Google Scholar
  12. 12.
    Marciniak, A., Obuchowicz, A., Monczak, A., Kołodziński, M.: Cytomorphometry of fine needle biopsy material from the breast cancer. In: Proc. 4th Int. Conf. on Computer Recognition Systems, CORES 2005, pp. 603–609 (2005)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)MATHGoogle Scholar
  14. 14.
    Naz, S., Majeed, H., Irshad, H.: Image segmentation using fuzzy clustering: A survey. In: Proc 6th Int. Conf. Emerging Technologies, ICET 2010, pp. 181–186 (2010)Google Scholar
  15. 15.
    Śmietański, J., Tadeusiewicz, R., Łuczyńska, E.: Texture analysis in perfusion images of prostate cancer - a case study. Int. J. Appl. Math and Comp. Sci. 20(1), 149–156 (2010)CrossRefGoogle Scholar
  16. 16.
    Suri, J.S., Setarhdan, K., Singh, S.: Advanced Algorithmic Approaches to Medical Image Segmentation. Springer, London (2002)CrossRefGoogle Scholar
  17. 17.
    Underwood, J.C.E.: Introduction to biopsy interpretation and surgical pathology. Springer, London (1987)CrossRefGoogle Scholar
  18. 18.
    Wozniak, M.: Experiments on linear combiners. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine. Advances in Soft Computing, vol. 47, pp. 445–452. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Wozniak, M., Krawczyk, B.: Combined classifier based on feature space partitioning. Journal of Applied Mathematics and Computer Science 22(4) (in press, to appear, 2012)Google Scholar
  20. 20.
    Wozniak, M., Zmyslony, M.: Combining classifiers using trained fuser - analytical and experimental results. Neural Network World 13(7), 925–934 (2010)Google Scholar
  21. 21.
    Xu, L., Jordan, M.I.: On convergence properties of the em algorithm for gaussian mixtures. Neural Computation 8, 129–151 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bartosz Krawczyk
    • 1
  • Paweł Filipczuk
    • 2
  • Michał Woźniak
    • 1
  1. 1.Department of Systems and Computer NetworksWroclaw University of TechnologyWrocławPoland
  2. 2.Institute of Control & Computation EngineeringUniversity of Zielona GóraZielona GóraPoland

Personalised recommendations