An Axiomatic Model for Merging Stratified Belief Bases by Negotiation

  • Trong Hieu Tran
  • Quoc Bao Vo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)


This paper presents an axiomatic model for merging stratified belief bases by negotiation. We introduce the concept of mapping solution, which maps the preferences of agents into layers, as a vehicle to represent the belief states of agents and their attitudes towards the negotiation situations. The belief merging process in our model is divided into two stages: in the first stage, the agents’ stratified belief bases are maped to their preferences, and in the second stage a negotiation between the agents is carried out based on these preferences. In this paper, a set of rational axioms for negotiation-based belief merging is proposed and a negotiation solution which satisfies the proposed axioms is introduced. Finally, the logical properties of a family of merging-by-negotiation operators are discussed.


Belief merging Belief negotiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abidi, M.A., Gonzalez, R.C.: Data fusion in robotics and machine intelligence. Academic Press Professional, Inc., San Diego (1992)zbMATHGoogle Scholar
  2. 2.
    Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press, Addison-Wesley (1999)Google Scholar
  3. 3.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Bajcsy, R. (ed.) IJCAI, pp. 640–647. Morgan Kaufmann (1993)Google Scholar
  4. 4.
    Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic merging and distance-based fusion of propositional information. Annals of Mathematics and Artificial Intelligence 34, 217–252 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Booth, R.: A negotiation-style framework for non-prioritised revision. In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge, TARK 2001, pp. 137–150. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  6. 6.
    Booth, R.: Social contraction and belief negotiation. Inf. Fusion 7, 19–34 (2006)CrossRefGoogle Scholar
  7. 7.
    Brewka, G.: A rank based description language for qualitative preferences. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 303–307. IOS Press (2004)Google Scholar
  8. 8.
    Danilowicz, C., Nguyen, N.T.: Consensus-based partitions in the space of ordered partitions. Pattern Recognition 21(3), 269–273 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    de Amo, S., Carnielli, W.A., Marcos, J.: A Logical Framework for Integrating Inconsistent Information in Multiple Databases. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 67–84. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Konieczny, S.: Belief base merging as a game. Journal of Applied Non-Classical Logics 14(3), 275–294 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Konieczny, S., Lang, J., Marquis, P.: Da2 merging operators. Artif. Intell. 157, 49–79 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Konieczny, S., Pérez, R.P.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Levi, I.: Subjunctives, dispositions and chances. Synthese 34, 423–455 (1977)zbMATHCrossRefGoogle Scholar
  14. 14.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: State of the art and challenges. ACM Trans. Multimedia Comput. Commun. Appl. 2(1), 1–19 (2006)CrossRefGoogle Scholar
  15. 15.
    Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83, 363–378 (1996)CrossRefGoogle Scholar
  16. 16.
    Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Nguyen, N.T.: A method for ontology conflict resolution and integration on relation level. Cybernetics and Systems 38(8), 781–797 (2007)zbMATHCrossRefGoogle Scholar
  18. 18.
    Nguyen, N.T.: Inconsistency of knowledge and collective intelligence. Cybernetics and Systems 39(6), 542–562 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  20. 20.
    Pattichis, C.S., Pattichis, M.S., Micheli-Tzanakou, E.: Medical imaging fusion applications: An overview. In: ACSSC, vol. 2, pp. 1263–1267 (2001)Google Scholar
  21. 21.
    Qi, G., Liu, W., Bell, D.A.: Merging stratified knowledge bases under constraints. In: AAAI, pp. 281–286 (2006)Google Scholar
  22. 22.
    Ren, W., Beard, R., Atkins, E.: A survey of consensus problems in multi-agent coordination. In: Proceedings of American Control Conference, vol. 3, pp. 1859–1864 (June 2005)Google Scholar
  23. 23.
    Revesz, P.Z.: On the semantics of arbitration. International Journal of Algebra and Computation 7, 133–160 (1995)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)Google Scholar
  25. 25.
    Sliwko, L., Nguyen, N.T.: Using multi-agent systems and consensus methods for information retrieval in internet. International Journal of Intelligent Information and Database Systems (IJIIDS) 1(2), 181–198 (2007)CrossRefGoogle Scholar
  26. 26.
    Tran, T.H., Nguyen, N.T., Vo, Q.B.: Axiomatic characterization of belief merging by negotiation. Multimedia Tools and Applications (2012)Google Scholar
  27. 27.
    Zhang, D.: A logic-based axiomatic model of bargaining. Artif. Intell. 174, 1307–1322 (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Trong Hieu Tran
    • 1
    • 2
  • Quoc Bao Vo
    • 2
  1. 1.Wroclaw University of TechnologyWroclawPoland
  2. 2.Swinburne University of TechnologyHawthornAustralia

Personalised recommendations