Advertisement

Comparison of Fuzzy Combiner Training Methods

  • Tomasz Wilk
  • Michał Woźniak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)

Abstract

More recently, neural network techniques and fuzzy logic inference systems have been receiving an increasing attention. At the same time, methods of establishing decision by a group of classifiers are regarded as a general problem in various application areas of pattern recognition. Fuzzy combiner proposed by authors, harnesses the support values from classifiers to provide final response having no other restrictions on their structure. The work on generalization of the two-class classification into multiclass classification by means of a fuzzy inference system is extended in this paper. Different methods of fuzzy combiner training are investigated and the result of computer experiments carried out on UCI benchmark datasets in the Matlab environment are presented.

Keywords

fuzzy combiner combined classifier system ANFIS neural-fuzzy system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilk, T., Woźniak, M.: Combination of one-class classifiers for multiclass problems by fuzzy logic. Neural Network World International Journal on Non-Standard Computing and Artificial Intelligence 20, 853–869 (2010)Google Scholar
  2. 2.
    Zeng, Q., Zhang, L., Xu, Y., Cheng, L., Yan, X., Zu, J., Dai, G.: Designing expert system for in situ Si3N4 toughened based on adaptive neural fuzzy inference system and genetic algorithms. Materials and Design 30, 256–259 (2009)CrossRefGoogle Scholar
  3. 3.
    Barbara, D., Couto, J., Jajodia, S., Wu, N.: Special Section on Data Mining for Intrusion Detection and Threat Analysis: A Testbed for Exploring the Use of Data Mining in Intrusion Detection. ACM SIGMOD Record 30, 15–24 (2001)CrossRefGoogle Scholar
  4. 4.
    Kuncheva, L.I., Bezdek, J.C.W., Duin, R.P.: Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 2, 299–314 (2001)CrossRefGoogle Scholar
  5. 5.
    Lee, C., Lin, C.: Multiple Compensatory Neural Fuzzy Networks Fusion Using Fuzzy Integral. Journal of Information Science and Engineering 3, 837–851 (2007)Google Scholar
  6. 6.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, New Jersey (2004)zbMATHCrossRefGoogle Scholar
  7. 7.
    Rutkowski, L., Cpalka, K.: Flexible Neuro-Fuzzy Systems. Neural Networks 14, 554–574 (2003)CrossRefGoogle Scholar
  8. 8.
    Tax, D.M.J., Duin, R.P.W.: Using two-class classifiers for multiclass classification. Pattern Recognition Group 2, 124–127 (2002)Google Scholar
  9. 9.
    Dimou, I.N., Zervakis, M.E.: Support Vector Machines versus Decision Templates in Biomedical Decision Fusion. In: Seventh International Conference on Machine Learning and Applications, pp. 625–630 (2008)Google Scholar
  10. 10.
    Hong, J., Min, J., Cho, J.U., Cho, S.: Fingerprint classification using one-vs-all support vector machines dynamically ordered with naïve Bayes classifiers. Patter Recognition 2, 662–671 (2008)CrossRefGoogle Scholar
  11. 11.
    Galar, M., Fernandez, A.E.B., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognition 8, 1761–1776 (2011)CrossRefGoogle Scholar
  12. 12.
    Wilk, T., Woźniak, M.: Soft computing methods applied to combination of one-class classifiers. Neurocomputing 75, 185–193 (2012)CrossRefGoogle Scholar
  13. 13.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, Dept. of Information and Computer Sciences, University of California, Irvine (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html
  14. 14.
    Männle, M.: Parameter Optimization for Takagi-Sugeno Fuzzy Models - Lessons Learnt. In: Proceedings of IEEE Systems Man and Cybernetics, pp. 111–116 (2001)Google Scholar
  15. 15.
    Alpaydin, M.E.: Introduction to Machine Learning, 2nd edn. The MIT Press, Cambridge (2010)zbMATHGoogle Scholar
  16. 16.
    Aarabi, A., Fazel-Rezai, R., Aghakhani, Y.: A fuzzy rule-based system for epileptic seizure detection in intracranial EEG Clinical Neurophysiology. Clinical Neurophisiology 120, 1648–1657 (2009)CrossRefGoogle Scholar
  17. 17.
    Mahmoud, T.S., Marhaban, M.H., Hong, T.S.: ANFIS Controller with Fuzzy Subtractive Clustering Method to Reduce Coupling Effects in Twin Rotor MIMO System (TRMS) with Less Memory and Time Usage. Advanced Computer Control, 19–23 (2009)Google Scholar
  18. 18.
    Duin, R.P.W., Juszczak, P., Paclik, P., Pekalska, E., de Ridder, D., Tax, D.M.J.: PRTools 4, a matlab toolbox for pattern recognition, Delft University of Technology (2004)Google Scholar
  19. 19.
    Tax, D.M.J.: DDTools 1.7.3, the Data Description Toolbox for Matlab, Delft University of Technology (2009)Google Scholar
  20. 20.
    Klautau, A., Jevtic, N., Orlitsky, A.: Combined Binary Classifiers With Application To Speech Recognition. Journal of Machine Learning Research 4, 1–15 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Wilk
    • 1
  • Michał Woźniak
    • 2
  1. 1.Capgemini PolandWrocławPoland
  2. 2.Department of Systems and Computer NetworksWroclaw University of TechnologyWroclawPoland

Personalised recommendations