A Tree-Based Approach for Mining Frequent Weighted Utility Itemsets

  • Bay Vo
  • Bac Le
  • Jason J. Jung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7653)


In this paper, we propose a method for mining Frequent Weighted Utility Itemsets (FWUIs) from quantitative databases. Firstly, we introduce the WIT (Weighted Itemset Tidset) tree data structure for mining high utility itemsets in the work of Le et al. (2009) and modify it into MWIT (M stands for Modification) tree for mining FWUIs. Next, we propose an algorithm for mining FWUIs using MWIT-tree. We test the proposed algorithm in many databases and show that they are very efficient.


frequent weighted utility itemsets MWIT-tree quantitative databases weighted support 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. of ACM SIGMOD 1993, pp. 207–216 (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of Very Large Databases 1994, pp. 487–499 (1994)Google Scholar
  3. 3.
    Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: HUC-Prune: An efficient candidate pruning technique to mine high utility patterns. Applied Intelligence 34(2), 181–198 (2011)CrossRefGoogle Scholar
  4. 4.
    Erwin, A., Gopalan, R.P., Achuthan, N.R.: CTU-Mine: An efficient high utility itemset mining algorithm using the pattern growth approach. In: Proc. of the IEEE 7th International Conferences on Computer and Information Technology, pp. 71–76 (2007)Google Scholar
  5. 5.
    Ganter, B., Wille, R.: Formal concept analysis. Springer (1999)Google Scholar
  6. 6.
    Khan, M.S., Muyeba, M., Coenen, F.: A weighted utility framework for mining association rule. In: Proc. of IEEE European Modeling Symposium (EMS 2008), pp. 87–92 (2008a)Google Scholar
  7. 7.
    Khan, M.S., Muyeba, M.K., Coenen, F.: Weighted Association Rule Mining from Binary and Fuzzy Data. In: Perner, P. (ed.) ICDM 2008. LNCS (LNAI), vol. 5077, pp. 200–212. Springer, Heidelberg (2008b)CrossRefGoogle Scholar
  8. 8.
    Lan, G.C., Hong, T.P., Tseng, V.S.: Discovery of high utility itemsets from on-shelf time periods of products. Expert Systems with Applications 38(6), 5851–5857 (2011)CrossRefGoogle Scholar
  9. 9.
    Le, B., Nguyen, H., Cao, T.A., Vo, B.: A novel algorithm for mining high utility itemsets. In: Proc. of the 1st Asian Conference on Intelligent Information and Database Systems, pp. 13–16. IEEE (2009)Google Scholar
  10. 10.
    Le, B., Nguyen, H., Vo, B.: Efficient Algorithms for mining frequent weighted itemsets from weighted items databases. In: Proc. of the 8th IEEE-RIVF, pp. 59–64 (2010)Google Scholar
  11. 11.
    Le, B., Nguyen, H., Vo, B.: An efficient strategy for mining high utility itemsets. International Journal of Intelligent Information and Database Systems 5(2), 164–176 (2011)CrossRefGoogle Scholar
  12. 12.
    Li, Y.C., Yeh, J.S., Chang, C.C.: Isolated items discarding strategy for discovering high utility itemsets. Data & Knowledge Engineering 64(1), 198–217 (2008)CrossRefGoogle Scholar
  13. 13.
    Lin, C.-W., Hong, T.-P., Lu, W.-H.: Efficiently Mining High Average Utility Itemsets with a Tree Structure. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5990, pp. 131–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Lin, C.W., Hong, T.P., Lu, W.H.: An effective tree structure for mining high utility item-sets. Expert Systems with Applications 38(6), 7419–7424 (2011)CrossRefGoogle Scholar
  15. 15.
    Lin, C.W., Lan, G.C., Hong, T.P.: An incremental mining algorithm for high utility itemsets. Expert Systems with Applications 39(8), 7196–7206 (2012)CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Liao, W., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proc. of UBDM 2005, pp. 90–99 (2005)Google Scholar
  17. 17.
    Ma, C.X., Zhang, J.: DHUI: A new algorithm for mining high utility itemsets. In: Proc. of the Eighth International Conference on Machine Learning and Cybernetics, pp. 173–177 (2009)Google Scholar
  18. 18.
    Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proc. of 2004 SIAM International Conference on Data Mining, pp. 482–486 (2004)Google Scholar
  19. 19.
    Yao, H., Hamilton, H.J.: Mining itemsets utilities from transaction databases. Data and Knowledge Engineering 59(3), 603–626 (2005)CrossRefGoogle Scholar
  20. 20.
    Yao, H., Hamilton, H.J., Geng, L.: A unified framework for utility based measures for mining itemsets. In: Proc. of UBDM 2006, pp. 28–37 (2006)Google Scholar
  21. 21.
    Tao, F., Murtagh, F., Farid, M.: Weighted association rule mining using weighted support and significance framework. In: Proc. of SIGKDD 2003, pp. 661–666 (2003)Google Scholar
  22. 22.
    Vo, B., Nguyen, H., Ho, T.B., Le, B.: Parallel Method for Mining High Utility Itemsets from Vertically Partitioned Distributed Databases. In: Velásquez, J.D., Ríos, S.A., Howlett, R.J., Jain, L.C. (eds.) KES 2009, Part I. LNCS, vol. 5711, pp. 251–260. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Zaki, M.J., Hsiao, C.J.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4), 462–478 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bay Vo
    • 1
  • Bac Le
    • 2
  • Jason J. Jung
    • 3
  1. 1.Information Technology CollegeHo Chi MinhViet Nam
  2. 2.Department of Computer ScienceUniversity of ScienceHo Chi MinhViet Nam
  3. 3.Department of Computer EngineeringYeungnam UniversityRepublic of Korea

Personalised recommendations