Min-Max Itemset Trees for Dense and Categorical Datasets

  • Jennifer Lavergne
  • Ryan Benton
  • Vijay V. Raghavan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7661)


The itemset tree data structure is used in targeted association mining to find rules within a user’s sphere of interest. In this paper, we propose two enhancements to the original unordered itemset trees. The first enhancement consists of sorting all nodes in lexical order based upon the itemsets they contain. In the second enhancement, called the Min-Max Itemset Tree, each node was augmented with minimum and maximum values that represent the range of itemsets contained in the children below. For demonstration purposes, we provide a comprehensive evaluation of the effects of the enhancements on the itemset tree querying process by performing experiments on sparse, dense, and categorical datasets.


data mining association mining targeted association mining itemset tree min-max itemset tree dense data categorical data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Srikant, R., Agrawal, R.: Mining Generalized Association Rules. In: Proceedings of the 21st International Conference on Very Large Data Bases, VLDB 1995, pp. 407–419 (1995)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)Google Scholar
  3. 3.
    Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. SIGMOD Rec., 1–12 (1994)Google Scholar
  4. 4.
    Cheung, Y., Fu, A.: Mining frequent itemsets without support threshold: with and without item constraints. IEEE Trans. on Knowledge and Data Engineering, 1069–2004 (1994)Google Scholar
  5. 5.
    Pei, J., Jiawei Han, J.: Constrained frequent pattern mining: a pattern-growth view. SIGKDD Explor. Newsl., 31–39 (2002)Google Scholar
  6. 6.
    Pei, J., Jiawei Han, J., Lakshmanan, L.: Mining frequent itemsets with convertible constraints. In: Proceedings of Data Engineering, pp. 433–442 (2001)Google Scholar
  7. 7.
    Burdick, D., Calimlim, M., Gehrke, J.: MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Data Engineering, pp. 443–452 (2001)Google Scholar
  8. 8.
    Hafez, A., Deogun, J., Raghavan, V.V.: The Item-Set Tree: A Data Structure for Data Mining. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 183–192. Springer, Heidelberg (1999)sGoogle Scholar
  9. 9.
    Kubat, M., Hafez, A., Raghavan, V., Lekkala, J., Chen, W.: Itemset trees for targeted association querying. IEEE Transactions on Knowledge and Data Engineering, 1522–1534 (2003)Google Scholar
  10. 10.
    Li, Y., Kubat, M.: Searching for high-support itemsets in itemset trees. Intell. Data Anal., 105–120 (2006)Google Scholar
  11. 11.
    Cooper, C., Zito, M.: Realistic Synthetic Data for Testing Association Rule Mining Algorithms for Market Basket Databases. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 398–405. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Rozsypal, A., Kubat, M.: Association Mining in Gradually Changing Domains. In: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, pp. 366–370 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jennifer Lavergne
    • 1
  • Ryan Benton
    • 1
  • Vijay V. Raghavan
    • 1
  1. 1.The Center for Advanced Computer StudiesUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations