Mining Top-K Non-redundant Association Rules

  • Philippe Fournier-Viger
  • Vincent S. Tseng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7661)


Association rule mining is a fundamental data mining task. However, depending on the choice of the thresholds, current algorithms can become very slow and generate an extremely large amount of results or generate too few results, omitting valuable information.Furthermore, it is well-known that a large proportion of association rules generated are redundant. In previous works, these two problems have been addressed separately. In this paper, we address both of them at the same time by proposing an approximate algorithm named TNR for mining top-k non redundant association rules.


association rules top-k non-redundant rules algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielminski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Proc. ACM Intern. Conf. on Management of Data, pp. 207–216. ACM Press (June 1993)Google Scholar
  2. 2.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publ., San Francisco (2006)zbMATHGoogle Scholar
  3. 3.
    Fournier-Viger, P., Wu, C.-W., Tseng, V.S.: Mining Top-K Association Rules. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS, vol. 7310, pp. 61–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Webb, G.I., Zhang, S.: k-Optimal-Rule-Discovery. Data Mining and Knowledge Discovery 10(1), 39–79 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Webb, G.I.: Filtered top-k association discovery. WIREs Data Mining and Knowledge Discovery 1, 183–192 (2011)CrossRefGoogle Scholar
  6. 6.
    You, Y., Zhang, J., Yang, Z., Liu, G.: Mining Top-k Fault Tolerant Association Rules by Redundant Pattern Disambiguation in Data Streams. In: Proc. 2010 Intern. Conf. Intelligent Computing and Cognitive Informatics, pp. 470–473. IEEE Press (March 2010)Google Scholar
  7. 7.
    Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: IGB: A New Informative Generic Base of Association Rules. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 81–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Cherif, C.L., Bellegua, W., Ben Yahia, S., Guesmi, G.: VIE_MGB: A Visual Interactive Exploration of Minimal Generic Basis of Association Rules. In: Proc. of the Intern. Conf. on Concept Lattices and Application (CLA 2005), pp. 179–196 (2005)Google Scholar
  10. 10.
    Kryszkiewicz, M.: Representative Association Rules and Minimum Condition Maximum Consequence Association RulesGoogle Scholar
  11. 11.
    Lucchese, C., Orlando, S., Perego, R.: Fast and Memory Efficient Mining of Frequent Closed Itemsets. IEEE Trans. Knowl. and Data Eng. 18(1), 21–36 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Philippe Fournier-Viger
    • 1
  • Vincent S. Tseng
    • 2
  1. 1.Dept. of Computer ScienceUniversity of MonctonCanada
  2. 2.Dept. of Computer Science and Info. EngineeringNational Cheng Kung UniversityTaiwan

Personalised recommendations