The Problem of Finding the Sparsest Bayesian Network for an Input Data Set is NP-Hard

  • Paweł Betliński
  • Dominik Ślęzak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7661)

Abstract

We show that the problem of finding a Bayesian network with minimum number of edges for an input data set is NP-hard. We discuss the analogies of formulation and proof of our result to other studies in the areas of Bayesian networks and knowledge discovery.

Keywords

Bayesian networks Markov boundaries Knowledge discovery Optimization criteria Minimum dominating sets NP-hardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chickering, D.M.: Learning Bayesian Networks is NP-Complete. In: Fisher, D., Lenz, H. (eds.) Learning from Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer (1996)Google Scholar
  2. 2.
    Chickering, D.M.: Optimal Structure Identification with Greedy Search. Journal of Machine Learning Research 3, 507–554 (2002)MathSciNetGoogle Scholar
  3. 3.
    Chickering, D.M., Heckerman, D., Meek, C.: Large-sample Learning of Bayesian Networks is NP-Hard. The Journal of Machine Learning Research 5, 1287–1330 (2004)MathSciNetMATHGoogle Scholar
  4. 4.
    Cooper, F.G., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9, 309–347 (1992)MATHGoogle Scholar
  5. 5.
    Jensen, F.V.: Bayesian Networks and Decision Graphs. Statistics for Engineering and Information Science. Springer (2001)Google Scholar
  6. 6.
    Kloesgen, W., Żytkow, J.M. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press (2002)Google Scholar
  7. 7.
    Neapolitan, R.: Learning Bayesian Networks. Prentice Hall (2004)Google Scholar
  8. 8.
    Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Information Sciences 177(1), 3–27 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Pearl, J.: Bayesian Networks: A Model of Self-activated Memory for Evidential Reasoning. In: Proc. of the 7th Conf. of the Cognitive Science Society, pp. 329–334. University of California, Irvine (1985)Google Scholar
  10. 10.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann (1988)Google Scholar
  11. 11.
    Savnik, I., Flach, P.A.: Discovery of Multivalued Dependencies from Relations. Intell. Data Anal. 4(3-4), 195–211 (2000)MATHGoogle Scholar
  12. 12.
    Shenoy, P.P.: Conditional Independence in Valuation-based Systems. International Journal of Approximate Reasoning 10, 203–234 (1994)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ślęzak, D.: Approximate Entropy Reducts. Fundamenta Informaticae 53(3-4), 365–390 (2002)MathSciNetGoogle Scholar
  14. 14.
    Ślęzak, D.: Degrees of Conditional (In)dependence: A Framework for Approximate Bayesian Networks and Examples Related to the Rough Set-based Feature Selection. Information Sciences 179(3), 197–209 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ślęzak, D.: Rough Sets and Functional Dependencies in Data: Foundations of Association Reducts. In: Gavrilova, M.L., Tan, C.J.K., Wang, Y., Chan, K.C.C. (eds.) Transactions on Computational Science V. LNCS, vol. 5540, pp. 182–205. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Studeny, M.: Probabilistic Conditional Independence Structures. Springer (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Paweł Betliński
    • 1
  • Dominik Ślęzak
    • 1
    • 2
  1. 1.Institute of MathematicsUniversity of WarsawWarsawPoland
  2. 2.Infobright Inc.WarsawPoland

Personalised recommendations