Skip to main content

Simple Proof of Basic Theorem for General Concept Lattices by Cartesian Representation

  • Conference paper
Book cover Modeling Decisions for Artificial Intelligence (MDAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7647))

  • 1038 Accesses

Abstract

We promote a useful representation of fuzzy sets by ordinary sets, called the Cartesian representation. In particular, we show how the main structures related to a general type of concept lattices may be reduced using this representation to their ordinary counterparts. As a consequence of this representation, we obtain a simple proof of the basic theorem for this type of concept lattices.

We acknowledge support by the Grant No. P202/10/0262 of the Czech Science Foundation (Belohlavek, Konecny, Osicka) and by IGA of Palacky University, No. PrF_20124029 (Konecny, Osicka).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandler, W., Kohout, L.J.: Semantics of implication operators and fuzzy relational products. Int. J. Man-Machine Studies 12, 89–116 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartl, E., Belohlavek, R.: Sup-t-norm and inf-residuum are a single type of relational equations. Int. Journal of General Systems 40(6), 599–609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belohlavek, R.: Fuzzy Galois connections. Math. Logic Quarterly 45, 497–504 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belohlavek, R.: Lattices of fixed points of fuzzy Galois connections. Math. Logic Quarterly 47(1), 111–116 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Belohlavek, R.: Reduction and a simple proof of characterization of fuzzy concept lattices. Fundamenta Informaticae 46(4), 277–285 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, Academic/Plenum Publishers, New York (2002)

    Book  MATH  Google Scholar 

  7. Belohlavek, R.: Concept lattices and order in fuzzy logic. Annals of Pure and Applied Logic 128(1-3), 277–298 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Belohlavek, R.: Optimal decompositions of matrices with entries from residuated lattices. J. Logic and Computation (September 7, 2011), doi: 10.1093/logcom/exr023

    Google Scholar 

  9. Belohlavek, R.: Sup-t-norm and inf-residuum are one type of relational product: unifying framework and consequences. Fuzzy Sets and Systems 197(16), 45–58 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Belohlavek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Proc. CLA 2005, 3rd Int. Conference on Concept Lattices and Their Applications, pp. 34–45 (2005)

    Google Scholar 

  11. Belohlavek, R., Vychodil, V.: Formal concept analysis and linguistic hedges. Int. J. General Systems 41(5), 503–532 (2012)

    Article  MathSciNet  Google Scholar 

  12. Birkhoff, G.: Lattice Theory, vol. 25. AMS Colloq. Publ. (1940)

    Google Scholar 

  13. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press (2002)

    Google Scholar 

  14. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  15. Gediga, G., Düntsch, I.: Modal-style operators in qualitative data analysis. In: Proc. IEEE ICDM 2002, pp. 155–162 (2002)

    Google Scholar 

  16. Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematical Logic 43, 1009–1039 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock (2001)

    MATH  Google Scholar 

  19. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  MATH  Google Scholar 

  20. Kohout, L.J., Bandler, W.: Relational-product architectures for information processing. Information Sciences 37, 25–37 (1985)

    Article  Google Scholar 

  21. Kohout, L.J., Kim, E.: The role of BK-products of relations in soft computing. Soft Computing 6, 92–115 (2002)

    Article  MATH  Google Scholar 

  22. Krajči, S.: The basic theorem on generalized concept lattices. In: Proc. CLA 2004, pp. 25–33 (2004)

    Google Scholar 

  23. Krajči, S.: A generalized concept lattice. Logic J. of IGPL 13, 543–550 (2005)

    Article  MATH  Google Scholar 

  24. Medina, J., Ojeda-Aciego, M., Ruiz-Claviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets and Systems 160, 130–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morsi, N.N., Lotfallah, W., El-Zekey, M.S.: The logic of tied implications, part 1: Properties, applications and representation; part 2: Syntax. Fuzzy Sets and Systems 157, 647–669, 2030–2057 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ore, O.: Galois connexions. Trans. Amer. Math. Soc. 55, 493–513 (1944)

    MathSciNet  MATH  Google Scholar 

  27. Pollandt, S.: Fuzzy Begriffe. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  28. Ward, M., Dilworth, R.P.: Residuated lattices. Trans. Amer. Math. Soc. 45, 335–354 (1939)

    Article  MathSciNet  Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belohlavek, R., Konecny, J., Osicka, P. (2012). Simple Proof of Basic Theorem for General Concept Lattices by Cartesian Representation. In: Torra, V., Narukawa, Y., López, B., Villaret, M. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2012. Lecture Notes in Computer Science(), vol 7647. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34620-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34620-0_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34619-4

  • Online ISBN: 978-3-642-34620-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics