Advertisement

Proxy Signature Scheme Based on Isomorphisms of Polynomials

  • Shaohua Tang
  • Lingling Xu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7645)

Abstract

The proxy signatures are important cryptosystems that are widely adopted in different applications. Most of the proxy signature schemes so far are based on the hardness of integer factoring, discrete logarithm, and/or elliptic curve. However, Shor proved that the emerging quantum computers can solve the problem of prime factorization and discrete logarithm in polynomial-time, which threatens the security of current RSA, ElGamal, ECC, and the proxy signature schemes based on these problems. We propose a novel proxy signature scheme based on the problem of Isomorphism of Polynomials (IP) which belongs to a major category of Multivariate Public Key Cryptography (MPKC). Through security discussion, our scheme can reach the same security level as the signature scheme based on IP problem. The most attractive advantage of our scheme should be its feature to potentially resist the future quantum computing attacks. Our scheme also owns some important properties of proxy signature schemes, such as strong unforgeability, strong identifiability, strong undeniability, secret-key’s dependence, distinguishability, etc. The scheme is implemented in C/C++ programming language, and the performance shows that the scheme is efficient. The parameters we choose can let security level of the scheme up to 286.59.

Keywords

Post-Quantum Cryptography Multivariate Public Key Cryptography Isomorphism of Polynomials Proxy Signature Digital Signature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Awasthi, A., Lal, S.: Proxy Blind Signature Scheme. Transaction on Cryptology 2(1), 5–11 (2005)Google Scholar
  2. 2.
    Bernstein, D.J., Buchmann, J., Dahmen, E.: Post Quantum Cryptography, Department of Computer Science, University of Illinois, Chicago. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for Delegation of Signing Rights. Journal of Cryptology 25(1), 57–115 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bouillaguet, C., Faugère, J., Fouque, P., Perret, L.: Differential Algorithms for the Isomorphism of Polynomials Problem (2009) (manuscript), http://eprint.iacr.org/2009/583.pdf
  5. 5.
    Bulygin, S., Petzoldt, A., Buchmann, J.: Towards Provable Security of the Unbalanced Oil and Vinegar Signature Scheme under Direct Attacks. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 17–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Dubois, V., Granboulan, L., Stern, J.: An Efficient Provable Distinguisher for HFE. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 156–167. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Faugère, J.-C., Perret, L.: Polynomial Equivalence Problems: Algorithmic and Theoretical Aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 30–47. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Fuchsbauer, G., Pointcheval, D.: Anonymous Proxy Signatures. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-completeness. W.H. Freeman (1979)Google Scholar
  10. 10.
    Geiselmann, W., Meier, W.: An Attack on the Isomorphisms of Polynomials Problem with One Secret. International Journal of Information Security 2, 59–64 (2003)CrossRefGoogle Scholar
  11. 11.
    Kim, S., Park, S., Won, D.: Proxy Signatures, Revisited. In: Information and Communications Security, pp. 223–232. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures: Delegation of The Power to Sign Messages. IEICE Transactions on Fundamentals, E79-A(9), 1338-1353 (1996)Google Scholar
  13. 13.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures for Delegating Signing Operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48-57. ACM (1996)Google Scholar
  14. 14.
    Patarin, J., Goubin, L., Courtois, N.T.: Improved Algorithms for Isomorphisms of Polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–200. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Perret, L.: A Fast Cryptanalysis of the Isomorphism of Polynomials with One Secret Problem. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 354–370. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Sakumoto, K., Shirai, T., Hiwatari, H.: On Provable Security of UOV and HFE Signature Schemes against Chosen-Message Attack. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 68–82. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Levy-dit-Vehel, F., Perret, L.: Polynomial Equivalence Problems. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 235–251. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Zhang, K.: Threshold Proxy Signature Schemes. In: Okamoto, E. (ed.) ISW 1997. LNCS, vol. 1396, pp. 282–290. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shaohua Tang
    • 1
  • Lingling Xu
    • 1
  1. 1.School of Computer Science & EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations