Boardroom Voting Scheme with Unconditionally Secret Ballots Based on DC-Net

  • Long-Hai Li
  • Cheng-Qiang Huang
  • Shao-Feng Fu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7645)


A novel electronic voting scheme is proposed which is quite suitable for small scale election settings. An outstanding characteristic of the design is its guarantee of unconditionally perfect ballot secrecy. It satisfies self-tallying, fairness and verifiability. Disruption of the result of an election equals to breaking the Discrete Logarithm Problem. Our scheme is built on top of the DC-net(dining cryptographers network) anonymous broadcast protocol. It needs no trusted authority to guarantee its security, but assumes a complete network of secure private channels between voters.


cryptographic protocol electronic voting anonymous broadcast ballot secrecy zero knowledge proof 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kiayias, A., Yung, M.: Self-tallying Elections and Perfect Ballot Secrecy. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 141–158. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Damgard, I., Jurik, M.: A Length-flexible Threshold Cryptosystem with Applications. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Groth, J.: Efficient Maximal Privacy in Boardroom Voting and Anonymous Broadcast. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 90–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Hao, F., Ryan, P., Zielinski, P.: Anonymous Voting by 2-Round Public Discussion. IET Information Security 4(2), 62–67 (2010)CrossRefGoogle Scholar
  5. 5.
    Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptography 1(1), 65–75 (1988)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cramer, R., Franklin, M.K., Schoenmakers, B., Yung, M.: Multi-authority Secret-Ballot Elections with Linear Work. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 72–83. Springer, Heidelberg (1996)Google Scholar
  7. 7.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Chaum, D.: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. Communications of the ACM 24(2), 84–88 (1981)CrossRefGoogle Scholar
  9. 9.
    Fujioka, A., Okamoto, T., Ohta, K.: A Practical Secret Voting Scheme for Large Scale Elections. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Neff, A.: A Verifiable Secret Shuffle and its Application to E-Voting. In: Proceedings of ACM CCS 2001, pp. 116–125. ACM Press, New York (2001)Google Scholar
  11. 11.
    Okamoto, T.: An Electronic Voting Scheme. In: Proceedings of IFIP 1996, Advanced IT Tools (1996)Google Scholar
  12. 12.
    Ohkubo, M., Miura, F., Abe, M., Fujioka, A., Okamoto, T.: An Improvement on a Practical Secret Voting Scheme. In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 225–234. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: Elections with Unconditionally-Secret Ballots and Disruption Equivalent to Breaking RSA. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 177–182. Springer, Heidelberg (1988)Google Scholar
  14. 14.
    Pfitzmann, B., Waidner, M.: Unconditionally Untraceable and Fault-tolerant Broadcast and Secret Ballot Election. Hildesheimer informatikberichte, Institut fur Informatik (1992)Google Scholar
  15. 15.
    Dolev, D., Strong, H.: Authenticated Algorithems for Byzantine Agreement. SIAM Journal on Computing 12(4), 656–666 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: Practical Asynchronous Byzantine Agreement using Cryptography. Journal of Cryptology 18(3), 219–246 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proof of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  19. 19.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)Google Scholar
  20. 20.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: Proceedings of ACM CCS 1993, pp. 62–73. ACM Press, New York (1993)Google Scholar
  21. 21.
    Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Long-Hai Li
    • 1
  • Cheng-Qiang Huang
    • 1
  • Shao-Feng Fu
    • 1
  1. 1.School of Computer Science and TechnologyXidian UniversityXi’anChina

Personalised recommendations