Production of Bioethanol from Biomass: An Overview

Chapter

Abstract

This chapter analyzes the main research trends on production of fuel ethanol from lignocellulosic materials. The main features of different pretreatment and detoxification methods are presented. The importance of process integration to simplify the overall process and improve the conversion of biomass into ethanol is discussed. Strategies for microbial strain development are disclosed in the framework of such integrated processes like simultaneous saccharification and co-fermentation and consolidated bioprocessing. The main challenges to fully develop the biomass-to-ethanol process are highlighted. Finally, the need of integrating the research efforts on molecular techniques and process integration is recognized.

References

  1. Abengoa (2011) Annual Report 2011. Abengoa BioenergyGoogle Scholar
  2. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. National Renewable Energy Laboratory, GoldenCrossRefGoogle Scholar
  3. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685PubMedCrossRefGoogle Scholar
  4. Alriksson B, Cavka A, Jonsson LJ (2011) Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresour Technol 102(2):1254–1263PubMedCrossRefGoogle Scholar
  5. Alvo P, Belkacemi K (1997) Enzymatic saccharification of milled timothy (Phleum pretense L.) and alfalfa (Medicago sativa L.). Bioresour Technol 61:185–198CrossRefGoogle Scholar
  6. Ballesteros I, Oliva JM, Sáez F, Ballesteros M (2001) Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl Biochem Biotechnol 91–93:237–252PubMedCrossRefGoogle Scholar
  7. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848CrossRefGoogle Scholar
  8. Baskaran S, Ahn H-J, Lynd LR (1995) Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog 11:276–281CrossRefGoogle Scholar
  9. Brandberg T, Sanandaji N, Gustafsson L, Franzén CJ (2005) Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnol Prog 21:1093–1101PubMedCrossRefGoogle Scholar
  10. Brethauer S, Wyman CE (2010) Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874PubMedCrossRefGoogle Scholar
  11. Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28(3):237–259CrossRefGoogle Scholar
  12. Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F (2004) Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 39:1533–1542CrossRefGoogle Scholar
  13. Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: Process design trends and integration opportunities. Bioresour Technol 98:2415–2457PubMedCrossRefGoogle Scholar
  14. Cardona CA, Sánchez ÓJ, Rossero JI (2006) Analysis of integrated schemas for effluent treatment during fuel ethanol production. Paper presented at the 17th international congress of chemical and process engineering (CHISA 2006), Prague, Czech RepublicGoogle Scholar
  15. Cardona CA, Gutiérrez LF, Sánchez OJ (2008) Process integration: Base for energy saving. In: Bergmann DM (ed) Energy efficiency research advances. Nova Science Publishers, Hauppauge, pp 173–212Google Scholar
  16. Cardona CA, Quintero JA, Sánchez ÓJ (2009) Challenges in fuel ethanol production. Int Rev Chem Eng 1(6):581–597Google Scholar
  17. Cardona CA, Quintero JA, Paz IC (2010a) Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour Technol 101(13):4754–4766PubMedCrossRefGoogle Scholar
  18. Cardona CA, Sánchez ÓJ, Gutiérrez LF (2010b) Process synthesis for fuel ethanol production. Biotechnology and bioprocessing, 1st edn. CRC Press, Boca RatonGoogle Scholar
  19. Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18(4):295–331PubMedCrossRefGoogle Scholar
  20. Cho KM, Yoo YJ (1999) Novel SSF process for ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, Saccharomyces cerevisiae L2612δGC. J Microb Biotechnol 9(3):340–345Google Scholar
  21. Claassen PAM, van Lier JB, López Contreras AM, van Niel EWJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755CrossRefGoogle Scholar
  22. Costa AC, Atala DIP, Maugeri F, Maciel R (2001) Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation. Process Biochem 37:125–137CrossRefGoogle Scholar
  23. Cuzens JC, Miller JR (1997) Acid hydrolysis of bagasse for ethanol production. Renew Energy 10(2–3):285–290CrossRefGoogle Scholar
  24. Cysewski GR, Wilke CR (1977) Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol Bioeng 19:1125–1143CrossRefGoogle Scholar
  25. Dale MC Moelhman M (2001) Enzymatic simultaneous saccharification and fermentation (SSF) of biomass to ethanol in a pilot 130 liter multistage continuous reactor separator. In: Bioenergy 2000, Moving Technology into the Marketplace, BuffaloGoogle Scholar
  26. Dale BE, Leong CK, Pham TK, Esquivel VM, Rios I, Latimer VM (1996) Hydrolysis of lignocellulosics at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116CrossRefGoogle Scholar
  27. Delgenes JP, Laplace JM, Moletta R, Navarro JM (1996) Comparative study of separated fermentations and cofermentation processes to produce ethanol from hardwood derives hydrolysates. Biomass Bioenergy 11(4):353–360CrossRefGoogle Scholar
  28. Dien BS, Hespell RB, Wyckoff HA, Bothast RJ (1998) Fermentation of hexose and pentose sugars using a novel ethanologenic Escherichia coli strain. Enzyme Microb Technol 23:366–371CrossRefGoogle Scholar
  29. Gao D, Chundawat SP, Krishnan C, Balan V, Dale BE (2010) Mixture optimization of six core glycosyl hydrolases for maximizing saccharification of ammonia fiber expansion (AFEX) pretreated corn stover. Bioresour Technol 101(8):2770–2781PubMedCrossRefGoogle Scholar
  30. Gauss WF, Suzuki S, Takagi M (1976) Manufacture of alcohol from cellulosic materials using plural ferments. United States Patent US3990944Google Scholar
  31. Geddes CC, Nieves IU, Ingram LO (2011) Advances in ethanol production. Curr Opin Biotechnol 22(3):312–319PubMedCrossRefGoogle Scholar
  32. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential US corn stover supplies. Agron J 99(1):1–11CrossRefGoogle Scholar
  33. Guan J, Hu X (2003) Simulation and analysis of pressure swing adsorption: ethanol drying process by the electric analogue. Sep Purif Technol 31:31–35CrossRefGoogle Scholar
  34. Guedon E, Desvaux M, Petitdemange H (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68(1):53–58PubMedCrossRefGoogle Scholar
  35. Hamelinck CN, Hooijdonk Gv, Faaij APC (2003) Prospects for ethanol from lignocellulosic biomass: techno-economic performance as development progresses. Utrecht University, UtrechtGoogle Scholar
  36. Hamelinck CN, van Hooijdonk G, Faaij APC (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy 28:384–410CrossRefGoogle Scholar
  37. Hong J, Tamaki H, Yamamoto K, Kumagai H (2003) Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol 63:42–50PubMedCrossRefGoogle Scholar
  38. Hu Z, Wen Z (2008) Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochem Eng J 38(3):369–378CrossRefGoogle Scholar
  39. Hu Z, Wang Y, Wen Z (2008) Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Appl Biochem Biotechnol 148(1–3):71–81PubMedCrossRefGoogle Scholar
  40. Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241CrossRefGoogle Scholar
  41. Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866PubMedCrossRefGoogle Scholar
  42. Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103:273–280PubMedCrossRefGoogle Scholar
  43. Jin M, Lau MW, Balan V, Dale BE (2010) Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour Technol 101(21):8171–8178PubMedCrossRefGoogle Scholar
  44. Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass Bioenergy 18:189–199CrossRefGoogle Scholar
  45. Kang W, Shukla R, Sirkar KK (1990) Ethanol production in a microporous hollow-fiber-based extractive fermentor with immobilized yeast. Biotechnol Bioeng 36:826–833PubMedCrossRefGoogle Scholar
  46. Kang L, Wang W, Lee YY (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161(1–8):53–66PubMedCrossRefGoogle Scholar
  47. Khiyami MA, Pometto AL III, Brown RC (2005) Detoxification of corn stover and corn starch pyrolysis liquors by Pseudomonas putida and Streptomyces setonii suspended cells and plastic compost support biofilms. J Agric Food Chem 53:2978–2987PubMedCrossRefGoogle Scholar
  48. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375CrossRefGoogle Scholar
  49. Ladanai S, Vinterbäck J (2009) Global potential of sustainable biomass for energy. Swedish University of Agricultural Sciences and Department of Energy and Technology, UppsalaGoogle Scholar
  50. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ Jr, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44PubMedCrossRefGoogle Scholar
  51. Lau MW, Gunawan C, Dale BE (2009) The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels 2:30PubMedCrossRefGoogle Scholar
  52. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24PubMedCrossRefGoogle Scholar
  53. Lee WG, Park BG, Chang YK, Chang HN, Lee JS, Park SC (2000) Continuous ethanol production from concentrated wood hydrolysates in an internal membrane-filtration bioreactor. Biotechnol Prog 16:302–304PubMedCrossRefGoogle Scholar
  54. Lee JM, Venditti RA, Jameel H, Kenealy WR (2011) Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 35(1):626–636CrossRefGoogle Scholar
  55. Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modeling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol Lett 23:1087–1093CrossRefGoogle Scholar
  56. Lin TH, Huang CF, Guo GL, Hwang WS, Huang SL (2012) Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis. Bioresour Technol 116:314–319PubMedCrossRefGoogle Scholar
  57. Llano-Restrepo M, Aguilar-Arias J (2003) Modeling and simulation of saline extractive distillation columns for the production of absolute etanol. Comput Chem Eng 27(4):527–549CrossRefGoogle Scholar
  58. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annu Rev Energy Env 21:403–465CrossRefGoogle Scholar
  59. Lynd LR, Elander RT, Wyman CE (1996) Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol 57(58):741–761CrossRefGoogle Scholar
  60. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793PubMedCrossRefGoogle Scholar
  61. Lynd LR, Lyford K, South CR, Walsum GPv, Levenson K (2001) Evaluation of paper sludges for amenability to enzymatic hydrolysis and conversion to ethanol. Tappi J 84:50–69Google Scholar
  62. Lynd LR, Weimer PJ, van Zyl WH, Pretorious IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedCrossRefGoogle Scholar
  63. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedCrossRefGoogle Scholar
  64. Madson PW, Monceaux DA (1995) Fuel ethanol production. In: Lyons TP, Kelsall DR, Murtagh JE (eds) The alcohol textbook. University Press, Nottingham, pp 257–268Google Scholar
  65. McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10(2/3):295–302CrossRefGoogle Scholar
  66. McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 77–79:649–665PubMedCrossRefGoogle Scholar
  67. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38(4):522–550CrossRefGoogle Scholar
  68. Merrick and Company (1998) Wastewater treatment options for the biomass-to-ethanol process. Merrick and Company, USAGoogle Scholar
  69. Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329PubMedCrossRefGoogle Scholar
  70. Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323PubMedCrossRefGoogle Scholar
  71. Montoya MI, Quintero JA, Sánchez ÓJ, Cardona CA (2005) Efecto del esquema de separación de producto en la producción biotecnológica de alcohol carburante. In: II Simposio sobre Biofábricas, MedellínGoogle Scholar
  72. Montoya S, Orrego CE, Levin L (2011) Modeling Grifola frondosa fungal growth during solid-state fermentation. Eng Life Sci 11:316–321CrossRefGoogle Scholar
  73. Montoya S, Orrego CE, Levin L (2012) Growth, fruiting and lignocellulolytic enzyme production by the edible mushroom Grifola frondosa (maitake). World J Microbiol Biotechnol 28:1533–1541PubMedCrossRefGoogle Scholar
  74. Moreira JS (2000) Sugarcane for energy—recent results and progress in Brazil. Energy Sustainable Dev 4(3):43–54CrossRefGoogle Scholar
  75. Moreno AD, Ibarra D, Fernandez JL, Ballesteros M (2012) Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol 106:101–109PubMedCrossRefGoogle Scholar
  76. Moritz JW, Duff SJB (1996) Simultaneous saccharification and extractive fermentation of cellulosic substrates. Biotechnol Bioeng 49(5):504–511PubMedCrossRefGoogle Scholar
  77. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686PubMedCrossRefGoogle Scholar
  78. Nakamura Y, Sawada T, Inoue E (2001) Enhanced ethanol production from enzymatically treated steam-exploded rice straw using extractive fermentation. J Chem Technol Biotechnol 76:879–884CrossRefGoogle Scholar
  79. Ogier J-C, Ballerini D, Leygue J-P, Rigal L, Pourquié J (1999) Production d’éthanol à partir de biomasse lignocellulosique. Oil Gas Sci Technol Rev de l’IFP 54(1):67–94CrossRefGoogle Scholar
  80. Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106(2):128–133PubMedCrossRefGoogle Scholar
  81. Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  82. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  83. Pan X, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao Z, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90(4):473–481PubMedCrossRefGoogle Scholar
  84. Percival Zhang YH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481PubMedCrossRefGoogle Scholar
  85. Persson P, Andersson J, Gorton L, Larsson S, Nilvebrant N-O, Jönsson LJ (2002) Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J Agric Food Chem 50:5318–5325PubMedCrossRefGoogle Scholar
  86. Pinto RTP, W-M MR, Lintomen L (2000) Saline extractive distillation process for ethanol purification. Comput Chem Eng 24:1689–1694CrossRefGoogle Scholar
  87. Reith JH, den Uil H, van Veen H, de Laat WTAM, Niessen JJ, de Jong E, Elbersen HW, Weusthuis R, van Dijken JP, Raamsdonk L (2002) Co-production of bioethanol, electricity and heat from biomass residues. In: 12th European conference and technology exhibition on biomass for energy, industry and climate protection, AmsterdamGoogle Scholar
  88. Saha BC, Iten LB, Cotta MA, Wu YV (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRefGoogle Scholar
  89. Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295PubMedCrossRefGoogle Scholar
  90. Sánchez ÓJ, Cardona CA (2012) Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis. Bioresour Technol 104:305–314PubMedCrossRefGoogle Scholar
  91. Sánchez OJ, Cardona CA, Cubides DC (2005) Modeling of simultaneous saccharification and fermentation process coupled with pervaporation for fuel ethanol production. In: 2nd Mercosur congress on chemical engineering and 4th mercosur congress on process systems engineering, Rio de Janeiro, BrazilGoogle Scholar
  92. Sánchez OJ, Gutiérrez LF, Cardona CA, Fraga ES (2006) Analysis of extractive fermentation process for ethanol production using a rigorous model and a short-cut method. In: Bogle IDL, Žilinskas J (eds) Computer aided methods in optimal design and operations, vol 7., Series on computers and operations researchWorld Scientific Publishing Co, Singapore, pp 207–216CrossRefGoogle Scholar
  93. Schell DJ, Riley CJ, Dowe N, Farmer J, Ibsen KN, Ruth MF, Toon ST, Lumpkin RE (2004) A bioethanol process development unit: initial operating experiences and results with a corn fiber feedstock. Bioresour Technol 91:179–188PubMedCrossRefGoogle Scholar
  94. Shahbazi A, Li Y, Mims MR (2005) Application of sequential aqueous steam treatments to the fractionation of softwood. Appl Biochem Biotechnol 121–124:973–987PubMedCrossRefGoogle Scholar
  95. Shao X, Jin M, Guseva A, Liu C, Balan V, Hogsett D, Dale BE, Lynd L (2011) Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass. Bioresour Technol 102(17):8040–8045PubMedCrossRefGoogle Scholar
  96. Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy’s research and development activities for bioethanol. Biotechnol Prog 15:817–827PubMedCrossRefGoogle Scholar
  97. Singh D, Nigam P, Banat IM, Marchant R, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations. Part II: Use of Kluyveromyces marxianus IMB3. World J Microbiol Biotechnol 14:823–834CrossRefGoogle Scholar
  98. South CR, Hogsett DA, Lynd LR (1993) Continuous fermentation of cellulosic biomass to ethanol. Appl Biochem Biotechnol 39(40):587–600CrossRefGoogle Scholar
  99. Stenberg K, Galbe M, Zacchi G (2000) The influence of lactic acid formation on the simultaneous saccharification and fermentation (SSF) of softwood to ethanol. Enzyme Microb Technol 26:71–79CrossRefGoogle Scholar
  100. Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34(2):421–424CrossRefGoogle Scholar
  101. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11PubMedCrossRefGoogle Scholar
  102. Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(5/6):367–375CrossRefGoogle Scholar
  103. Szitkai Z, Lelkes Z, Rev E, Fonyo Z (2002) Optimization of hybrid ethanol dehydration systems. Chem Eng Process 41:631–646CrossRefGoogle Scholar
  104. Takagi M, Abe S, Suzuki S, Emert GH, Yata N (1977) A method for production of ethanol directly from cellulose using cellulase and yeast. In: Ghose TK (ed) Proceedings of bioconversion symposium, Delhi, IIT, pp 551–571Google Scholar
  105. Tan HT, Lee KT (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem Eng J 183:448–458CrossRefGoogle Scholar
  106. Taylor F, Kurantz MJ, Goldberg N, Craig JC Jr (1996) Control of packed column fouling in the continuous fermentation and stripping of ethanol. Biotechnol Bioeng 51:33–39PubMedCrossRefGoogle Scholar
  107. Taylor F, Kurantz MJ, Goldberg N, McAloon AJ, Craig JC Jr (2000) Dry-grind process for fuel ethanol by continuous fermentation and stripping. Biotechnol Prog 16:541–547PubMedCrossRefGoogle Scholar
  108. Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179CrossRefGoogle Scholar
  109. Tsuyomoto M, Teramoto A, Meares P (1997) Dehydration of ethanol on a pilot plant scale, using a new type of hollow-fiber membrane. J Membr Sci 133:83–94CrossRefGoogle Scholar
  110. Varga E, Klinkle HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88(5):567–574PubMedCrossRefGoogle Scholar
  111. Vinuselvi P, Lee SK (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb Technol 50(1):1–4PubMedCrossRefGoogle Scholar
  112. Wang B, Wang X, Feng H (2010) Deconstructing recalcitrant Miscanthus with alkaline peroxide and electrolyzed water. Bioresour Technol 101(2):752–760PubMedCrossRefGoogle Scholar
  113. Wang W, Yuan T, Wang K, Cui B, Dai Y (2012) Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresour Technol 107:282–286PubMedCrossRefGoogle Scholar
  114. Weerachanchai P, Leong SS, Chang MW, Ching CB, Lee JM (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour Technol 111:453–459PubMedCrossRefGoogle Scholar
  115. Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR (2002) Removal of fermentation inhibitors formed during pretreatment of biomass by polymeric adsorbents. Ind Eng Chem Res 41:6132–6138CrossRefGoogle Scholar
  116. Wooley R, Ruth M, Glassner D, Sheejan J (1999a) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803PubMedCrossRefGoogle Scholar
  117. Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999b) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis. Current and futuristic scenarios. National Renewable Energy Laboratory, GoldenGoogle Scholar
  118. Wyman CE (1994) Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour Technol 50:3–16CrossRefGoogle Scholar
  119. Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenergy 3(5):301–307CrossRefGoogle Scholar
  120. Xie Y, Phelps D, Lee C-H, Sedlak M, Ho N, Wang N-HL (2005) Comparison of two adsorbents for sugar recovery from biomass hydrolyzate. Ind Eng Chem Res 44:6816–6823CrossRefGoogle Scholar
  121. Xu L, Tschirner U (2011) Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol 102(21):10065–10071PubMedCrossRefGoogle Scholar
  122. Yu Z, Zhang H (2003) Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass Bioenergy 24:257–262CrossRefGoogle Scholar
  123. Yu J, Zhang J, He J, Liu Z, Yu Z (2009) Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol 100(2):903–908PubMedCrossRefGoogle Scholar
  124. Zaldivar J, Roca C, Le Foll C, Hahn-Hägerdal B, Olsson L (2005) Ethanolic fermentation of acid pre-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. Bioresour Technol 96:1670–1676PubMedCrossRefGoogle Scholar
  125. Zhang YH (2008) Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 35(5):367–375PubMedCrossRefGoogle Scholar
  126. Zhang Y-HP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulose systems. Biotechnol Bioeng 8(7):797–824CrossRefGoogle Scholar
  127. Zhou S, Ingram LO (2001) Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol Lett 23(18):1455–1462CrossRefGoogle Scholar
  128. Zhu JY, Zhu W, Obryan P, Dien BS, Tian S, Gleisner R, Pan XJ (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86(5):1355–1365PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of Agricultural BiotechnologyUniversidad de CaldasManizalesColombia

Personalised recommendations