Skip to main content

Robust Active Learning for Linear Regression via Density Power Divergence

  • Conference paper
  • 2919 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7665)

Abstract

The performance of active learning (AL) is crucially influenced by the existence of outliers in input samples. In this paper, we propose a robust pool-based AL measure based on the density power divergence. It is known that the density power divergence can be accurately estimated even under the existence of outliers within data. We further derive an AL scheme based on an asymptotic statistical analysis on the M-estimator. The performance of the proposed framework is investigated empirically using artificial and real-world data.

Keywords

  • Active Learning
  • Density Power Divergence
  • Regression

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34487-9_72
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34487-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, C., Cristianini, N., Smola, A.: Query learning with large margin classifiers. In: Proceedings of the 17th Int. Conf. on Machine Learning, pp. 111–118 (2000)

    Google Scholar 

  2. Hakkani-Tur, D., Riccardi, G., Gorin, A.: Active learning for automatic speech recognition. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing, vol. 4, pp. 3904–3907 (2002)

    Google Scholar 

  3. McCallum, A., Nigam, K.: Employing EM in pool-based active learning for text classification. In: Proceedings of the 15th Int. Conf. on Machine Learning, pp. 350–358 (1998)

    Google Scholar 

  4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    CrossRef  Google Scholar 

  5. Settles, B., Craven, M.: An analysis of active learning strategies for sequence labeling tasks. In: Proceedings of the Conf. on Empirical Methods in Natural Language Processing, pp. 1070–1079. Association for Computational Linguistics (2008)

    Google Scholar 

  6. Settles, B.: Active learning literature survey. Technical Report Computer Science Technical Report 1648, University of Wisconsin-Madison (2010)

    Google Scholar 

  7. Zhang, T., Oles, F.: The value of unlabeled data for classification problems. In: Proceedings of the 17th Int. Conf. on Machine Learning, pp. 1191–1198 (2000)

    Google Scholar 

  8. Van der Vaart, A.: Asymptotic statistics. Cambridge Univ. Pr. (2000)

    Google Scholar 

  9. Basu, A., Harris, I., Hjort, N., Jones, M.: Robust and efficient estimation by minimising a density power divergence. Biometrika 85(3), 549–559 (1998)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Fujisawa, H., Eguchi, S.: Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis 99(9), 2053–2081 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Hoi, S., Jin, R., Zhu, J., Lyu, M.: Batch mode active learning and its application to medical image classification. In: Proceedings of the 23rd Int. Conf. on Machine Learning, pp. 417–424 (2006)

    Google Scholar 

  12. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  13. Torgo, L.: Regression datasets, http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sogawa, Y., Ueno, T., Kawahara, Y., Washio, T. (2012). Robust Active Learning for Linear Regression via Density Power Divergence. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)