Skip to main content

Hierarchical K-Means Algorithm for Modeling Visual Area V2 Neurons

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7665))

Abstract

Computational studies about the properties of the receptive fields of neurons in the cortical visual pathway of mammals are abundant in the literature but most addressed neurons in the primary visual area (V1). Recently, the sparse deep belief network (DBN) was proposed to model the response properties of neurons in the V2 area. By investigating the factors that contribute to the success of the model, we find that a simple algorithm for data clustering, K-means algorithm can be stacked into a hierarchy to reproduce these properties of V2 neurons, too. In addition, it is computationally much more efficient than the sparse DBN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229–289 (1965)

    Google Scholar 

  2. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  3. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37(23), 3311–3325 (1997)

    Article  Google Scholar 

  4. Bell, A.J., Sejnowski, T.J.: The “independent components” of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)

    Article  Google Scholar 

  5. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada, vol. 20 (2007)

    Google Scholar 

  6. Ranzato, M., Boureau, Y.L., LeCun, Y.: Sparse feature learning for deep belief networks. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems (NIPS), Vancouver, Canada, vol. 20 (2007)

    Google Scholar 

  7. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS), Ft. Lauderdale, FL (2011)

    Google Scholar 

  8. Saxe, A.M., Bhand, M., Mudur, R., Suresh, B., Ng, A.Y.: Unsupervised learning models of primary cortical receptive fields and receptive field plasticity. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Advances in Neural Information Processing Systems (NIPS), vol. 24, pp. 1971–1979 (2011)

    Google Scholar 

  9. Karklin, Y., Lewicki, M.S.: A hierarchical bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Computation 17, 397–423 (2005)

    Article  MATH  Google Scholar 

  10. Karklin, Y., Lweicki, M.S.: Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457, 83–86 (2009)

    Article  Google Scholar 

  11. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nature Neuroscience 2, 1019–1025 (1999)

    Article  Google Scholar 

  12. Cadieu, C., Kouh, M., Pasupathy, A., Connor, C.E., Riesenhuber, M., Poggio, T.: A model of V4 shape selectivity and invariance. Journal of Neurophysiology 98, 1733–1750 (2007)

    Article  Google Scholar 

  13. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Computation 14, 1771–1800 (2002)

    Article  MATH  Google Scholar 

  15. Ito, M., Komatsu, H.: Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. The Journal of Neuroscience 24(13), 3313–3324 (2004)

    Article  Google Scholar 

  16. Ekanadham, C.: Sparse deep belief net models for visual area V2. Undergraduate honors thesis, Stanford University (2007)

    Google Scholar 

  17. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th International Conference on Machine Learning (ICML), Montreal, Canada, pp. 609–616 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, X., Qi, P., Zhang, B. (2012). Hierarchical K-Means Algorithm for Modeling Visual Area V2 Neurons. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7665. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34487-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34487-9_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34486-2

  • Online ISBN: 978-3-642-34487-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics