Advertisement

A Dynamic Bio-inspired Model of Categorization

  • Hamidreza Jamalabadi
  • Hossein Nasrollahi
  • Majid Nili Ahmadabadi
  • Babak Nadjar Araabi
  • AbdolHossein Vahabie
  • Mohammadreza Abolghasemi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7664)

Abstract

Motivated by the outstanding performance of primates in pattern recognition tasks, the main purpose of this research is to exploit the behavioral and neuro-biological findings from primates’ visual perception mechanism for categorization applications. Dynamic Bio-Inspired Categorization system (DyBIC) is implemented utilizing nonlinear first order differential equations and its training phase can be accomplished online. The order of the set of differential equations is exclusively a function of the number of categories to be discriminated and the length of the feature vectors doesn’t affect system complexity. Besides, the proposed method carries out recognition in a multi-scale mode which is compatible with some of the well-known cognitive and neural phenomena like categorical perception and hierarchical discrimination. The performance of DyBIC is tested on a handmade typical classification example.

Keywords

pattern recognition dynamical systems categorical perception hierarchy attention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panchen, A.L.: Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  2. 2.
    Heisele, B., Serre, T., Pontil, M., Vetter, T., Poggio, T.: Categorization by Learning and Combining Object Parts. In: NIPS, Vancouver (2001)Google Scholar
  3. 3.
    Schöner, G.: Dynamical Systems Approaches to Cognition. In: Cambridge Handbook of Computational Cognitive Modeling. Cambridge University Press, Cambridge (2007)Google Scholar
  4. 4.
    Gelder, T.V.: The Dynamical Hypothesis in Cognitive Science. Behav. Brain Sci. 21, 615–665 (1998)Google Scholar
  5. 5.
    Georges, A., Kotliar, G., Krauth, W., Rozenberg, M.J.: Dynamical Mean-Field Theory of Strongly Correlated Fermion Systems and the Limit of Infinite Dimensions. Reviews of Modern Physics 68, 13–125 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fitzgerald, D.J., Sincich, L.C., Sharpee, T.O.: Minimal Models of Multidimensional Computations. PLoS Computational Biology 7 (2011)Google Scholar
  7. 7.
    Mazzoni, P., Andersen, R.A., Jordon, M.I.: A More Biologically Plausible Learning Rule for Neural Networks. Proc. Natl. Acad. Sci. USA, Neurobiology 88, 4433–4437 (1991)CrossRefGoogle Scholar
  8. 8.
    Moon, T.K.: The Expectation-Maximization Algorithm. IEEE Signal Processing Magazine 13, 47–60 (1996)CrossRefGoogle Scholar
  9. 9.
    Goldstone, R.L., Hendrickson, A.T.: Categorical Perception. Interdisciplinary Reviews: Cognitive Science 1, 65–78 (2010)Google Scholar
  10. 10.
    Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 4th edn. McGraw-Hill, New York (2000)Google Scholar
  11. 11.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience. The MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  12. 12.
    Moldakarimov, S., Roolenhagen, J.E., Olson, C.R., Chow, C.C.: Competitive Dynamics in Cortical Responses to Visual Stimuli. J. Neurophysiol. 94, 3388–3396 (2005)CrossRefGoogle Scholar
  13. 13.
    Gilbert, C., Wiesel, T.N.: Receptive Field Dynamics in Adult Primary Visual Cortex. Nature 356, 150–152 (1992)CrossRefGoogle Scholar
  14. 14.
    Maass, W.: Networks of Spiking Neurons: The Third Generation of Neural Network Models. Neural Network 10, 1659–1671 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hamidreza Jamalabadi
    • 1
  • Hossein Nasrollahi
    • 1
  • Majid Nili Ahmadabadi
    • 1
    • 2
  • Babak Nadjar Araabi
    • 1
    • 2
  • AbdolHossein Vahabie
    • 2
  • Mohammadreza Abolghasemi
    • 2
  1. 1.Cognitive Robotics Lab, Control and Intelligent Processing Center of Excellence, School of ECE., College of Eng.Univ. of TehranIran
  2. 2.School of Cognitive SciencesInstitute for Research in Fundamental Sciences, IPMIran

Personalised recommendations