Skip to main content

The Use of ASM Feature Extraction and Machine Learning for the Discrimination of Members of the Fish Ectoparasite Genus Gyrodactylus

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7666)

Abstract

Active Shape Models (ASM) are applied to the attachment hooks of several species of Gyrodactylus, including the notifiable pathogen G. salaris, to classify each species to their true species type. ASM is used as a feature extraction tool to select information from hook images that can be used as input data into trained classifiers. Linear (i.e. LDA and KNN) and non-linear (i.e. MLP and SVM) models are used to classify Gyrodactylus species. Species of Gyrodactylus, ectoparasitic monogenetic flukes of fish, are difficult to discriminate and identify on morphology alone and their speciation currently requires taxonomic expertise. The current exercise sets out to confidently classify species, which in this example includes a species which is notifiable pathogen of Atlantic salmon, to their true class with a high degree of accuracy. The findings from the current exercise demonstrates that data subsequently imported into a K-NN classifier, outperforms several other methods of classification (i.e. LDA, MLP and SVM) that were assessed, with an average classification accuracy of 98.75%.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algabary, K.M., Omar, K.: A comparative study of face recognition using improved AAM, PCA and ICA via Feret Date Base. European Journal of Scientific Research (2010)

    Google Scholar 

  2. Ali, R., Hussain, A., Bron, J.E., Shinn, A.P.: Multi-stage classification of Gyrodactylus species using machine learning and feature selection techniques. In: Int. Conf. on Intelligent Systems Design and Applications (ISDA), pp. 457–462 (2011)

    Google Scholar 

  3. Blackledge, J.M., Dubovitskiy, A.: Object detection and classification with applications to skin cancer screening. ISAST Transactions on Intelligent Systems 1(1), 34–45 (2008)

    Google Scholar 

  4. Choi, J., Chung, Y., Kim, K., Yoo, J.: Face recognition using energy probability in DCT domain, pp. 1549–1552. IEEE (2006)

    Google Scholar 

  5. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)

    Article  Google Scholar 

  6. Cunningham, C.O., McGillivray, D.M., MacKenzie, K., Melvin, W.T.: Discrimination between Gyrodactylus salaris, G. derjavini and G. truttae (Platyhelminthes: Monogenea) using restriction fragment length polymorphisms and an oligonucleotide probe within the small subunit ribosomal RNA gene. Parasitology 111, 87–94 (1995a)

    Article  Google Scholar 

  7. Cunningham, C., McGillivray, D., MacKenzie, K., Melvin, W.: Identification of Gyrodactylus (monogenea) species parasitizing salmonid fish using DNA probes. Journal of Fish Diseases 18, 539–544 (1995b)

    Article  Google Scholar 

  8. Du, J.X., Wang, X.F., Zhang, G.J.: Leaf shape based plant species recognition. Applied Mathematics and Computation 185(2), 883–893 (2007)

    Article  MATH  Google Scholar 

  9. Hansen, H., Bachmann, L., Bakke, T.A.: Mitochondrial DNA variation of Gyrodactylus spp (Monogenea, Gyrodactylidae) populations infecting Atlantic salmon, grayling, and rainbow trout in Norway and Sweden. International Journal for Parasitology 33, 1471–1478 (2003)

    Article  Google Scholar 

  10. Kay, J.W., Shinn, A.P., Sommerville, C.: Towards an automated system for the identification of notifiable pathogens: using Gyrodactylus salaris as an example. Parasitology Today 15(5), 201–203 (1999)

    Article  Google Scholar 

  11. Lai, C.H., Yu, S.S., Tseng, H.Y., Tsai, M.H.: A protozoan parasite extraction scheme for digital microscope images. Computerized Medical Imaging and Graphics 34, 122–130 (2010)

    Article  Google Scholar 

  12. Lee, J.S., Wu, H.H., Yuan, M.Z.: Lung segmentation for chest radiograph by using adaptive active shape models. In: Int. Conf. on Information Assurance and Security, pp. 383–386 (2009)

    Google Scholar 

  13. Maini, R., Aggarwal, H.: Study and comparison of various image edge detection techniques. International Journal of Image Processing (IJIP) 3(1), 1–60 (2009)

    Google Scholar 

  14. McHugh, S.E., Shinn, A.P., Kay, J.W.: Discrimination of G. salaris and G. thymalli using statistical classifiers applied to morphometric data. Parasitology 121, 315–323 (2000)

    Article  Google Scholar 

  15. Meinilä, M., Kuusela, J., Zietara, M., Lumme, J.: Brief report: Primers for amplifying 820 bp of highly polymorphic mitochondrial COI gene of Gyrodactylus salaris. Hereditas 137, 72–74 (2002)

    Article  Google Scholar 

  16. Quivy, C.H., Kumazawa, I.: Normalization of active appearance model for fish species identification. International Scholarly Research Network, ISRN Signal Processing (2011)

    Google Scholar 

  17. Shinn, A.P., Kay, J.W., Sommerville, C.: The use of statistical classifier for the discrimination of species of the genus Gyrodactylus (Monogenea) parasitizing salmonids. Parasitology 120, 261–269 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ali, R., Hussain, A., Bron, J.E., Shinn, A.P. (2012). The Use of ASM Feature Extraction and Machine Learning for the Discrimination of Members of the Fish Ectoparasite Genus Gyrodactylus. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34478-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34478-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34477-0

  • Online ISBN: 978-3-642-34478-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics