Improved BTC Algorithm for Gray Scale Images Using K-Means Quad Clustering

  • Jayamol Mathews
  • Madhu S. Nair
  • Liza Jo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7666)


With images replacing textual and audio in most technologies, the volume of image data used in everyday life is very large. It is thus important to make the image file sizes smaller, both for storage and file transfer. Block Truncation Coding (BTC) is a lossy moment preserving quantization method for compressing digital gray level images. Even though this method retains the visual quality of the reconstructed image it shows some artifacts like staircase effect, etc. near the edges. A set of advanced BTC variants reported in literature were analyzed and it was found that though the compression efficiency is increased, the quality of the image has to be improved. An Improved Block Truncation Coding using k-means Quad Clustering (IBTC-KQ) is proposed in this paper to overcome the above mentioned drawbacks. A new approach of BTC to preserve the first order moments of homogeneous pixels in a block is presented. Each block of the input image is segmented into quad-clusters using k-means clustering algorithm so that homogeneous pixels are grouped into the same cluster. The block is then encoded by means of the pixel values in each cluster. Experimental analysis shows an improvement in the visual quality of the reconstructed image with high Peak Signal-to-Noise Ratio (PSNR) values compared to the conventional BTC and other modified BTC methods.


Image compression Block Truncation Coding Image clustering k-means clustering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall (2008)Google Scholar
  2. 2.
    Khalid, S.: Introduction to Data Compression, 3rd edn. (2005)Google Scholar
  3. 3.
    Baxes, G.A.: Digital Image Processing – Principles and Applications, pp. 179–179. John Wiley & Sons (1994)Google Scholar
  4. 4.
    Delp, E.J., Mitchell, O.R.: Image Compression Using Block Truncation Coding. IEEE Trans. Commun. 27(9), 1335–1342 (1979)CrossRefGoogle Scholar
  5. 5.
    Lema, M.D., Mitchell, O.R.: Absolute Moment Block Truncation Coding and Its Application to Color Image. IEEE Trans. Commun. 32, 1148–1157 (1984)CrossRefGoogle Scholar
  6. 6.
    Cheng, S.C., Tsai, W.H.: Image Compression by Moment-Preserving Edge Detection. Pattern Recogn. 27, 1439–1449 (1994)CrossRefGoogle Scholar
  7. 7.
    Desai, U.Y., Mizuki, M.M., Masaki, I., Horn, B.K.P.: Edge and Mean Based Compression. MIT Artif. Intell. Lab. AI Memo 1584 (1996)Google Scholar
  8. 8.
    Amarunnishad, T.M., Govindan, V.K., Abraham, T.M.: Improving BTC Image Compression Using a Fuzzy Complement Edge Operator. Signal Process. Lett. 88, 2989–2997 (2008)zbMATHCrossRefGoogle Scholar
  9. 9.
    Amarunnishad, T.M., Govindan, V.K., Abraham, T.M.: A Fuzzy Complement Edge Operator. In: IEEE Proceedings of the Fourteenth International Conference on Advanced Computing and Communications, Mangalore, Karnataka, India (2006)Google Scholar
  10. 10.
    Kumar, A., Singh, P.: Enhanced Block Truncation Coding for Gray Scale Image. Int. J. Comput. Techn. Appl. 2(3), 525–530 (2011)Google Scholar
  11. 11.
    Kumar, A., Singh, P.: Futuristic Algorithm for Gray Scale Image based on Enhanced Block Truncation Coding. Int. J. Comput. Inform. Syst. 2, 53–60 (2011)Google Scholar
  12. 12.
    Kanungo, T., Mount, D.M., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: Analysis and implementation. In: Proceeding IEEE Conference of Computer Vision and Pattern Recognition, pp. 881–892 (2002)Google Scholar
  13. 13.
    Doaa, M., Fatma, A.: Image Compression Using Block Truncation Coding. Cyber J.: Multidiscipl. J. Sci. Techn. J. Sel. Areas Telecom. (2011)Google Scholar
  14. 14.
    Eskicioglu, A.M., Fisher, P.S.: Image Quality Measures and Their Performance. IEEE Trans. Commun. 34, 2959–2965 (1995)CrossRefGoogle Scholar
  15. 15.
    Yamsang, N., Udomhunsakul, S.: Image Quality Scale (IQS) for Compressed Images Quality Measurement. In: Proceedings of the International Multiconference of Engineers and Computer Scientists, vol. 1, pp. 789–794 (2009)Google Scholar
  16. 16.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment: from Error Measurement to Structural Similarity. IEEE Trans. Image Process. 13 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jayamol Mathews
    • 1
  • Madhu S. Nair
    • 1
  • Liza Jo
    • 2
  1. 1.Department of Computer ScienceUniversity of Kerala, KariavattomThiruvananthapuramIndia
  2. 2.Philips Electronics India LtdBangaloreIndia

Personalised recommendations