Decoding Cognitive States from Neural Activities of Somatosensory Cortex

  • Xiaoxu Kang
  • Marc Schieber
  • Nitish V. Thakor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)


Advanced dexterous prosthetics technology has been under rapid development as a potential solution to upper limb amputation. An important problem in the neural prosthetics design is to develop control policies for prosthesis movements. This requires an estimation of cognitive states. Previous works mostly used premotor and primary motor neurons to estimate cognitive states. Here we demonstrate that the recorded neural activity from the somatosensory cortex can be used to estimate cognitive states in complex behavioral tasks. We measure the latencies between the predicted cognitive state transitions and true transitions. The maximum prediction latency for grasping a sphere, pulling a mallet, pushing a button and pulling a cylinder are 42±21 ms, 91.6±10.7 ms, 177.1±94.6 ms, 22.5±74.5 ms, respectively. These latency estimates indicate that good timing of the cognitive states with small latencies can be obtained from the somatosensory neural data to plan movements of prosthetic limbs.


Cognitive State Somatosensory Cortex Neural Activity Neural Prosthetics Design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fetz, E.E.: Real-time control of a robotic arm by neuronal ensemble. Nature 2, 583–584 (1999)Google Scholar
  2. 2.
    Carmena, J.M., Lebedev, M.A., Crist, R.E., O’ Deoherty, J.E., Santucci, D.M., Dimitrov, D.F., Patil, P.G., Henriquez, C.S., Nicolelis, M.A.L.: Learning to control a brain-computer interface for reaching and grasping by primates. PLoS Biol. 1, 193–208 (2003)CrossRefGoogle Scholar
  3. 3.
    Donoghue, J.P.: Connecting cortex to machines: recent advances in brain interface. Nature Neurosci. 5, 1085–1088 (2002)CrossRefGoogle Scholar
  4. 4.
    Musallam, S., Corneil, B.D., Scherberger, H., Andersen, R.A.: Cognitive control signals for neural prosthetics. Science 305, 258–262 (2004)CrossRefGoogle Scholar
  5. 5.
    Nicolelis, M.A.: Actions from thoughts. Nature 409, 403–407 (2001)CrossRefGoogle Scholar
  6. 6.
    Santhenam, G., Ryu, S.I., Yu, B.M., Afshar, A., Shenoy, K.V.: A high-performance brain-computer interface. Nature 442, 195–198 (2006)CrossRefGoogle Scholar
  7. 7.
    Schwartz, B.: Cortical neuronal prosthetics. Annu. Rev. Neuroci. 27, 487–505 (2004)CrossRefGoogle Scholar
  8. 8.
    Scott, S.H.: Neuroscience: converting thoughts into action. Nature 416, 141–142 (2006)CrossRefGoogle Scholar
  9. 9.
    Achtman, N., Afshar, A., Santhanam, G., Yu, B.M., Ryu, S.I., Shenoy, K.V.: Free-paced high performance brain-computer interfaces. J. Neural. Eng. 4, 336–347 (2007)CrossRefGoogle Scholar
  10. 10.
    Acharya, S., Tenore, F., Aggarwal, V., Etienne-Cummings, R., Schieber, M.H., Thakor, N.V.: Decoding individual finger movements using volume constrained neuronal ensembles in the M1 hand area. IEEE Trans. on Neural Syst. Rehabilitation Eng. 16(1), 15–23 (2008)CrossRefGoogle Scholar
  11. 11.
    Aggarwal, V., Acharya, S., Tenore, F., Hyun-Chool, S., Etienne-Cummings, R., Schieber, M.H., Thakor, N.V.: Asynchronous Decoding of dexterous finger using M1 neurons. IEEE Trans. on Neural Syst. Rehabilitation Eng. 16, 3–14 (2008)CrossRefGoogle Scholar
  12. 12.
    Aggarwal, V., Kerr, M., Davidson, A.G., Davoodi, R., Loeb, G.E., Schieber, M.H., Thakor, N.V.: Cortical control of reach and grasp kinematics in a virtual environment using musculoskeletal modeling software. Proc. IEEE Eng. Med. Biol.Soc. Conf. 17, 03–06 (2008)Google Scholar
  13. 13.
    Hudson, N., Burdick, J.: Learning hybrid system models for supervisorydecoding of discrete state, with applications to the parietal reach region. In: Proceedings of the 2007 CNE 2007 3rd International IEEE/EMBS Conference on Neural Engineering, pp. 587–592 (2007)Google Scholar
  14. 14.
    Srinivasan, L., Eden, U., Mitter, S., Brown, E.: General-purpose filter design forneural prosthetic devices. J. Neurophysiol. 98, 2456–2475 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaoxu Kang
    • 1
  • Marc Schieber
    • 2
  • Nitish V. Thakor
    • 1
  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Neurology, Cognitive Behavioral NeurologyUniversity of RochesterRochesterUSA

Personalised recommendations