Semantic Levels of Domain-Independent Commonsense Knowledgebase for Visual Indexing and Retrieval Applications

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)


Building intelligent tools for searching, indexing and retrieval applications is needed to congregate the rapidly increasing amount of visual data. This raised the need for building and maintaining ontologies and knowledgebases to support textual semantic representation of visual contents, which is an important block in these applications. This paper proposes a commonsense knowledgebase that forms the link between the visual world and its semantic textual representation. This domain-independent knowledge is provided at different levels of semantics by a fully automated engine that analyses, fuses and integrates previous commonsense knowledgebases. This knowledgebase satisfies the levels of semantic by adding two new levels: temporal event scenarios and psycholinguistic understanding. Statistical properties and an experiment evaluation, show coherency and effectiveness of the proposed knowledgebase in providing the knowledge needed for wide-domain visual applications.


Commonsense Knowledgebase Multimedia Mining Semantic Levels Ontology Development Multimedia Indexing and Retrieval 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  2. 2.
    Liu, H., Singh, P.: Conceptnet: a practical commonsense reasoning tool-kit. BT Technology Journal 22(4), 211–226 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pennebaker, J.W., Francis, M.E., Booth, R.J.: Linguistic inquiry and word count-liwc 2001. Lawrence Erlbaum Associates, Mahwah (2001)Google Scholar
  4. 4.
    Zhu, S., Ngo, C.W., Jiang, Y.G.: On the pooling of positive examples with ontology for visual concept learning. In: The 19th ACM international conference on Multimedia, pp. 1045–1048. ACM (2011)Google Scholar
  5. 5.
    Dalakleidi, K., Dasiopoulou, S., Stoilos, G., Tzouvaras, V., Stamou, G., Kompatsiaris, Y.: Semantic Representation of Multimedia Content. In: Paliouras, G., Spyropoulos, C.D., Tsatsaronis, G. (eds.) Multimedia Information Extraction. LNCS, vol. 6050, pp. 18–49. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Shevade, B., Sundaram, H.: A Visual Annotation Framework Using Common-Sensical and Linguistic Relationships for Semantic Media Retrieval. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J.‘. (eds.) AMR 2005. LNCS, vol. 3877, pp. 251–265. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Altadmri, A., Ahmed, A.: Automatic semantic video annotation in wide domain videos based on similarity and commonsense knowledgebases. In: The IEEE International Conference on Signal and Image Processing Applications, pp. 74–79 (2009)Google Scholar
  8. 8.
    Zhang, Y.: Semantic-Based Visual Information Retrieval. IRM Press (2006)Google Scholar
  9. 9.
    Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos in the wild. In: Computer Vision and Pattern Recognition, pp. 1996–2003 (2009)Google Scholar
  10. 10.
    Over, P., Awad, G., Fiscus, J., Antonishek, B., Michel, M., Smeaton, A.F., Kraaij, W.: Trecvid 2010: An overview of the goals, tasks, data, evaluation mechanisms, and metrics. In: Trecvid 2010, pp. 1–34 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of LincolnLincolnUK

Personalised recommendations