Skip to main content

Discrete-Time Hopfield Neural Network Based Text Clustering Algorithm

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7663)

Abstract

In this study we propose a discrete-time Hopfield Neural Network based clustering algorithm for text clustering for cases L = 2q where L is the number of clusters and q is a positive integer. The optimum general solution for even 2-cluster case is not known. The main contribution of this paper is as follows: We show that i) sum of intra-cluster distances which is to be minimized by a text clustering algorithm is equal to the Lyapunov (energy) function of the Hopfield Network whose weight matrix is equal to the Laplacian matrix obtained from the document-by-document distance matrix for 2-cluster case; and ii) the Hopfield Network can be iteratively applied to text clustering for L = 2k. Results of our experiments on several benchmark text datasets show the effectiveness of the proposed algorithm as compared to the k-means.

Keywords

  • Text clustering
  • discrete-time Hopfield Neural Networks
  • Lyapunov function
  • max-cut graph partitioning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34475-6_66
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34475-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   131.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    CrossRef  Google Scholar 

  2. Luxburg, U.V.: A Tutorial on Spectral Clustering. Technical Report TR-149. Max-Planck Institute for Biological Cybernetics (August 2006)

    Google Scholar 

  3. Kim, H., Lee, S.: An intelligent information system for organizing online text documents. Knowledge and Information Systems 6(2), 125–149 (2004)

    Google Scholar 

  4. Hinneburg, A., Keim, D.: A general approach to clustering in large databases with noise. Knowledge and Information Systems 5(4), 387–415 (2003)

    CrossRef  Google Scholar 

  5. Zhong, S., Ghosh, J.: Generative model-based document clustering: a comparative study. Knowledge and Information Systems 8, 374–384 (2005)

    CrossRef  Google Scholar 

  6. Zanasi, A.: Text Mining and its Applications to Intelligence. Crm and Knowledge Management (Advances in Management Information). WIT Press (2005)

    Google Scholar 

  7. Huang, A.: Similarity Measures for Text Document Clustering. In: NZCSRSC 2008, New Zealand (2008)

    Google Scholar 

  8. Ding, C.H.Q.: Data clustering: Principal components, Hopfield and self-aggregation networks. NERSC Division, Lawrence Berkeley National Lab., Univ. of California, Berkeley

    Google Scholar 

  9. Ding, C.H.Q.: Document retrieval and clustering: from principal component analysis to self-aggregation networks. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

    Google Scholar 

  10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers (2006)

    Google Scholar 

  11. Uykan, Z.: Spectral Based Solutions for (Near) Optimum Channel/Frequency Allocation. In: Proc. of IWSSIP 2011, Sarajevo, BiH (2011)

    Google Scholar 

  12. Luxburg, U.V., Belkin, M., Bousquet, O.: Consistency of spectral clustering. Annals of Statistics 36, 555–586 (2008)

    MathSciNet  MATH  CrossRef  Google Scholar 

  13. Forman, G., Cohen, I.: Learning from Little: Comparison of Classifiers Given Little Training. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 161–172. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  14. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA Data Mining Software: An Update. SIGKDD Explorations 11, 10–18 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uykan, Z., Ganiz, M.C., Şahinli, Ç. (2012). Discrete-Time Hopfield Neural Network Based Text Clustering Algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds) Neural Information Processing. ICONIP 2012. Lecture Notes in Computer Science, vol 7663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34475-6_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34475-6_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34474-9

  • Online ISBN: 978-3-642-34475-6

  • eBook Packages: Computer ScienceComputer Science (R0)