Advertisement

Transient-Time Fractional-Space Trigonometry and Application

  • A. G. Radwan
  • Ahmed S. Elwakil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)

Abstract

In this work, we use the generalized exponential function in the fractional-order domain to define generalized cosine and sine functions. We then re-visit some important trigonometric identities and generalize them from the narrow integer-order subset to the more general fractional-order domain. It is clearly shown that trigonometric functions and trigonometric identities in the transient-time of a non-integer-order system have significantly different values from their steady-state values. Identities such as sin2(t) + cos2(t) = 1 are shown to be invalid in the transient-time of a fractional-order system. Some generalized hyperbolic functions and identities are also given in this work. Application to the evaluation of the step-response of a non-integer-order system is given.

Keywords

Fractional-Calculus Generalized Exponential function Fractional order systems Generalized Trigonometric Functions Generalized Hyperbolic Functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oldham, K.B., Spanier, J.: Fractional Calculus. Academic Press, New York (1974)zbMATHGoogle Scholar
  2. 2.
    Moshrefi-Torbati, M., Hammond, J.K.: Physical and Geometrical Interpretation of Fractional Operators. J. Frankl. Inst. 335, 1077–1086 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Application. Gordon & Breach (1987)Google Scholar
  4. 4.
    Charef, A., Sun, H., Tsao, Y., Onaral, B.: Fractal System as Represented by Singularity Function. IEEE Trans. Automat. Contr. 37, 1465–1470 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Podlubny, I.: Fractional-Order Systems and PID-Controllers. IEEE Trans. Automat. Contr. 44, 208–214 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hwang, C., Leu, J., Tsay, S.: A Note on Time-Domain Simulation of Feedback Fractional-Order Systems. IEEE Trans. Automat. Contr. 47, 625–631 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu, J., Chen, C.: A New Operational Approach for Solving Fractional Calculus and Fractional Differential Equations Numerically. IEICE Trans. Fundam. E87, 1077–1082 (2004)Google Scholar
  8. 8.
    Li, C., Chen, G.: Chaos and Hyperchaos in Fractional Order Rssler Equations. Phys. A 341, 55–61 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Special Issue: Fractional Calculus Applications in Signals and Systems. Signal Process. 86 (2006)Google Scholar
  10. 10.
    Oustaloup, A., Levron, F., Mathieu, B.: Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis. IEEE Trans. Circ. Syst. I 47, 25–39 (2000)CrossRefGoogle Scholar
  11. 11.
    Radwan, A.G., Soliman, A.G., Elwakil, A.S.: First Order Filters Generalized to the Fractional Domain. J. Circuits Syst. Comput. 17, 55–66 (2008)CrossRefGoogle Scholar
  12. 12.
    Maundy, B., Elwakil, A., Freeborn, T.: On the Practical Realization of Higher-Order Filters with Fractional Stepping. Signal Process. 91, 484–491 (2011)zbMATHCrossRefGoogle Scholar
  13. 13.
    Radwan, A.G., Soliman, A.M., Elwakil, A.S.: On the Stability of Fractional-Order Systems. Chaos Solit. Fract. 40, 2317–2328 (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ortigueira, M.D.: An Introduction to the Fractional Continuous-Time Linear Systems: the 21st Century Systems. IEEE Circuits Syst. Magaz. 8, 19–26 (2008)CrossRefGoogle Scholar
  15. 15.
    Elwakil, A.S.: Fractional Order Circuits and Systems: An Emerging Interdiscplinary Research Area. IEEE Circuits Syst. Magaz. 10, 41–50 (2010)Google Scholar
  16. 16.
    Jesus, I.S., Machado, J.A., Cunha, J.: Fractional Electrical Impedances in Botanical Elements. J. Vibrat. Control 14, 1389–1402 (2008)zbMATHCrossRefGoogle Scholar
  17. 17.
    Tang, C., You, F., Cheng, G., Gao, D., Fu, F., Dong, X.: Modeling the Frequency Dependence of the Electrical Properties of the Live Human Skull. Physiol. Meas. 30, 1293–1301 (2009)CrossRefGoogle Scholar
  18. 18.
    Elwakil, A.S., Maundy, B.: Extracting the Cole-Cole Impedance Model Parameters without Direct Impedance Measurement. Electr. Lett. 46, 1367–1368 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. G. Radwan
    • 1
  • Ahmed S. Elwakil
    • 2
  1. 1.Department of Engineering MathematicsCairo UniversityEgypt
  2. 2.Department of Electrical & Computer EngineeringUniversity of SharjahSharjahUAE

Personalised recommendations