Advertisement

Characterisation of Information Flow in an Izhikevich Network

  • Li Guo
  • Zhijun Yang
  • Bruce Graham
  • Daqiang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7663)

Abstract

Izhikevich network is a relatively new neuronal network, which consists of cortical spiking model neurons with axonal conduction delays and spike-timing-dependent plasticity (STDP). In this network polychrony is identified which is neither synchrony nor asynchrony, but a phenomenon of occurence and transmission of a sequence of firing patterns with specific inter-firing intervals. In this work we use van Rossum’s distance to measure the correlation between spike trains issued by neurons in a testing polychromous group and analyse the characterisation of information flow in the group of the network.

Keywords

Izhikevich network polychronous group information flow regular spiking fast spiking van Rossum’s distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Izhikevich, E.M.: Polychronization: Computation with Spikes. Neural Computation 18, 245–282 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Izhikevich, E.M.: Large-Scale Model of Mammalian Thalamocortical Systems. PNAS 105, 3593–3598 (2008)CrossRefGoogle Scholar
  3. 3.
    Slaughter, M.: Basic Concepts in Neuroscience, International Edition, vol. 1, pp. 2–14 (2001)Google Scholar
  4. 4.
    Izhikevich, E.M.: Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14, 1569–1572 (2003)CrossRefGoogle Scholar
  5. 5.
    Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)CrossRefGoogle Scholar
  6. 6.
    Izhikevich, E.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Izhikevich, E.M.: Polychronous Wavefront Computations. International Journal of Bifurcation and Chaos 19, 1733–1739 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wilson, H.R.: Spikes, Decisions, and Actions–the dynamical foundations of neuroscience, vol. 2, pp. 13–27. Oxford University Press, New York (1999)zbMATHGoogle Scholar
  9. 9.
    Song, S., Miller, K.D., Abbott, L.F.: Competition Hebbian Learning through Spike-timing-dependent Synaptic Plasticity. Nature Neuroscience 3, 919–926 (2000)CrossRefGoogle Scholar
  10. 10.
    Izhikevich, E.M.: Solving the Distal Reward Problem through Linkage of STDP and Dopamine Signaling. Cerebral Cortex 17, 2443–2452 (2007)CrossRefGoogle Scholar
  11. 11.
    Markram, H., Gerstne, W.R., Sjostrom, P.J.: A History of Spike-timing-dependent Plasticity. Frontiers in Synaptic Neuroscience 3, 1–24 (2011)CrossRefGoogle Scholar
  12. 12.
    Muller, L., Brette, R., Gutkin, B.: Spike-timing-dependent and feed-forward input oscillations produce precise and invariant spike phase-looking. Frontiers in Computational Neuroscience 5, 1–8 (2011)CrossRefGoogle Scholar
  13. 13.
    Dayan, P., Abbott, L.F.: Theoretical Neuroscience-Computational and Mathematical Modeling of Neural System, vol. 8, pp. 293–313. The MIT Press, Cambridge (2001)Google Scholar
  14. 14.
    Paiva, A.R.C., Park, I., Principe, J.C.: A Comparison of Binless Spike Train Measures. Natural Computing and Applications 19, 405–419 (2010)CrossRefGoogle Scholar
  15. 15.
    van Rossum, M.C.W.: A Novel Spike Distance. Neural Computation 13, 751–764 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Li Guo
    • 1
  • Zhijun Yang
    • 1
  • Bruce Graham
    • 2
  • Daqiang Zhang
    • 1
  1. 1.School of Computer ScienceNanjing Normal UniversityNanjingChina
  2. 2.Dept. of Math. and Computing SciencesStirling UniversityStirlingUK

Personalised recommendations