Skip to main content

Simulation-Based Parameter Identification for Online Condition Monitoring of Spindle Nut Drive

  • Chapter
  • 1844 Accesses

Abstract

In this article the development of a method for simulation-based condition monitoring of a spindle nut drive for machine tools will be presented. Thereby, parallel to the operation of the spindle nut drive, an automatic parameter identification of a corresponding simulation model is to be carried out with the aim to identify high-level information like stiffness and damping of the significant components based on the available drive signals. The underlying model for the identification consists of Finite Element (FE) component models and the corresponding component parameters like stiffness and damping of the bearings, spindle nut, etc. Beyond the parameter identification, the characteristics of the components (here stiffness) will be computed by the mentioned model. The identification and the calculation method in this paper is based on finding optimum stiffness parameters which are correspondent to the current state of the system and using a neural network to find the relation between the physical parameters of the system and measurable parameters of the system behavior. The results depict a new diagnostic process which could be also applicable for online condition monitoring of different components.

Keywords

  • Condition Monitoring
  • Machine Diagnosis
  • Parameter Identification
  • Spindle Nut
  • Ball Screw Drive

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34471-8_16
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34471-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jantunen, E.: A summary of methods applied to tool condition monitoring in drilling. Journal of Machine Tools & Manufacture 42(2), 997–1010 (2002)

    CrossRef  Google Scholar 

  2. Zhang, L., Yan, R., Gao, R.X., Lee, K.: Design of a Real-time Spindle Health Monitoring and Diagnosis System Based on Open Systems Architecture. In: International Smart Machining Systems Conference, France (2007)

    Google Scholar 

  3. Schopp, M.: Sensorbasierte Zustandsdiagnose und –prognose von Kugelgewindetrieben. Ph.D. desertation, Institute for production technique (wbk), Karlsruher University (2009)

    Google Scholar 

  4. Neugebauer, R., Fischer, J., Praedicow, M.: Condition-based preventive maintenance of main spindles. German Academic Society for Production Engineering Journal (WGP) (September 2010), doi:10.1007/s11740-010-0272-z

    Google Scholar 

  5. Sin, M.L., Soong, W.L., Ertugrul, N.: Induction machine on-line condition monitoring and fault diagnosis - a survey. In: Power Engineering Conference (AUPEC 2003), pp. 1–6. CDROM, Christchurch (2003)

    Google Scholar 

  6. Yan, R., Gao, R., Li, Z., Lee, K.B.: Modal Parameter Identification from Output-only Measurement Data: Application to Operating Spindle Condition Monitoring. In: ICFDM 2008, Tianjin, China (September 2008)

    Google Scholar 

  7. Zhang, L., Yan, R., Gao, R.X., Lee, K.: Design of a Real-time Spidnle Health Monitoring and Diagnosis System Based on Open Systems Architecture. In: International Smart Machining Systems Conference (2007)

    Google Scholar 

  8. Saravanan, S., Yadava, G.S., Rao, P.V.: Condition monitoring studies on spindle bearing of a lathe. Journal of Advance Manufacturing Technology (2005), doi:10.1007/s00170-004-2449-0

    Google Scholar 

  9. Zhang, L., Yan, R., Gao, R.X., Lee, K.: Design of a Real-time Spindle Health Monitoring and Diagnosis System Based on Open Systems Architecture. In: International Smart Machining Systems Conference, France (2007)

    Google Scholar 

  10. Dadalau, A., Verl, A.: Bottom-Up Component Oriented FE-Modelling of Machine Tools. In: ACUM 2011, Stuttgart (2011)

    Google Scholar 

  11. Mottahedi, M., Dadalau, A., Röck, S., Verl, A.: Simulation Based Condition Monitoring of Roll Bearing. In: ACUM 2011, Stuttgart (2011)

    Google Scholar 

  12. Kamalzadeh, A., Erkorkmaz, K.: Compensation of Axial Vibrations in Ball Screw Drives. Journal of Manufacturing Technology 56(1), 373–378 (2007)

    Google Scholar 

  13. Varanasi, K.K., Nayfeh, S.A.: The Dynamics of Lead-Screw Drives: Low-Order Modeling and Experiments. Journal of Dynamic Systems, Measurement, and Control 126(2), 388–397 (2004), doi:10.1115/1.1771690

    CrossRef  Google Scholar 

  14. Yan, R., Gao, R.X., Zhang, L., Lee, K.B.: Modal Parameter Identification from Output-only Measurement Data: Application to Operating Spindle Condition Monitoring. In: International Conference on Frontiers of Design and Manufacturing, Tianjin, China (September 2008)

    Google Scholar 

  15. Frey, S., Dadalau, A., Verl, A.: Expedient Modeling of Ball Screw Feed Drives. Production Engineering 6(2), 205–211 (2011), doi:10.1007/s11740-012-0371-0

    CrossRef  Google Scholar 

  16. Silva, R.G.: Condition Monitoring of the Cutting Process Using a Self-organizing Spiking Neural Network Map. Journal of Intelligent Manufacturing 21(6) (2010), doi:10.1007/s10845-009-0258-x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Mottahedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mottahedi, M., Röck, S., Verl, A. (2013). Simulation-Based Parameter Identification for Online Condition Monitoring of Spindle Nut Drive. In: Fathi, M. (eds) Integration of Practice-Oriented Knowledge Technology: Trends and Prospectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34471-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34471-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34470-1

  • Online ISBN: 978-3-642-34471-8

  • eBook Packages: EngineeringEngineering (R0)