A Parallel Approach to Clustering with Ant Colony Optimization

  • Guilherme N. Ramos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7589)

Abstract

Recent innovations have enabled ever increasing amounts of data to be collected and stored, leading to the problem of extracting knowledge from it. Clustering techniques help organizing and understanding such data, and parallelization of such may reduce the cost of achieving this goal or improve on the result. This works presents the parallel implementation of the HACO clustering method, analyzing process of parallelization and its results with different topologies and communication strategies.

Keywords

clustering ant colony optimization hyperbox parallel computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ramos, G.N., Hatakeyama, Y., Dong, F., Hirota, K.: Hyperbox clustering with Ant Colony Optimization (HACO) method and its application to medical risk profile recognition. Applied Soft Computing 9(2), 632–640 (2009)CrossRefGoogle Scholar
  2. 2.
    Simpson, P.K.: Fuzzy Min-max Neural Networks – Part 1: Classification. IEEE Transactions on Neural Networks 3(5), 776–786 (1992)CrossRefGoogle Scholar
  3. 3.
    Simpson, P.K.: Fuzzy Min-max Neural Networks – Part 2: Clustering. IEEE Transactions on Fuzzy Systems 1(1), 32–45 (1993)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)Google Scholar
  5. 5.
    Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The Self-organizing Exploratory Pattern of the Argentine Ant. Journal of Insect Behavior 3(2), 159–168 (1990)CrossRefGoogle Scholar
  6. 6.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  7. 7.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized Shortcuts in the Argentine Ant. Naturwissenschaften 76(12), 579–581 (1989)CrossRefGoogle Scholar
  8. 8.
    Manfrin, M., Birattari, M., Stützle, T., Dorigo, M.: Parallel Ant Colony Optimization for the Traveling Salesman Problem. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 224–234. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Ellabib, I., Calamai, P., Basir, O.: Exchange strategies for multiple Ant Colony System. Information Sciences 177(5), 1248–1264 (2007)CrossRefGoogle Scholar
  10. 10.
    Karniadakis, G.E., Kirby, R.M.: Parallel Scientific Computing in C++ and MPI. Cambridge University Press (2003)Google Scholar
  11. 11.
    MPI: A Message-Passing Interface Standard Version 2.2., http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf (online; accessed August 2010)
  12. 12.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)CrossRefGoogle Scholar
  13. 13.
    Skjellum, A., Lu, Z., Bangalore, P.V., Doss, N.: Explicit Parallel Programming in C++ based on the Message-Passing Interface (MPI). Parallel Programming Using C++, 767–776 (1995)Google Scholar
  14. 14.
    Randall, M., Lewis, A.: A Parallel Implementation of Ant Colony Optimization. Journal of Parallel and Distributed Computing 62(9), 1421–1432 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 252–260 (1995)Google Scholar
  16. 16.
    Di Caro, G., Dorigo, M.: AntNet: Distributed Stigmergetic Control for Communications Networks. Journal of Artificial Intelligence Research 9(2), 317–365 (1998)MATHGoogle Scholar
  17. 17.
    Shelokar, P.: An ant colony approach for clustering. Analytica Chimica Acta 509(2), 187–195 (2004)CrossRefGoogle Scholar
  18. 18.
    Martin, R.C.: Agile software development: principles, patterns, and practices. Prentice Hall PTR Upper Saddle River, NJ (2003)Google Scholar
  19. 19.
    Bullnheimer, B., Kotsis, G., Strauss, C.: Parallelization strategies for the ant system. Report Series SFB ”Adaptive Information Systems and Modelling in Economics and Management Science 8 (1997)Google Scholar
  20. 20.
    Antony, D., Piriyakumar, L., Levi, P.: A new approach to exploiting parallelism in ant colony optimization. In: Proceedings of 2002 International Symposium on Micromechatronics and Human Science, pp. 237–243 (2002)Google Scholar
  21. 21.
    Schildt, H.: C, The complete reference, 4th edn. Osborne/McGraw-Hill (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guilherme N. Ramos
    • 1
  1. 1.Dept. of Computer ScienceUniversity of BrasíliaBrazil

Personalised recommendations