Skip to main content

Linear Geometries

  • Chapter
  • 1500 Accesses

Abstract

In Example 1.4.9 we introduced the projective geometry PG(V) and in Example 1.4.10 the affine geometry AG(V) associated with a vector space V of finite dimension n. In Proposition 2.4.7 the geometry PG(V) was shown to have a linear Coxeter diagram A n−1, and in Proposition 2.4.10 the geometry AG(V) was shown to belong to the linear diagram Af n . We now turn our attention to the more general class of all geometries with a linear diagram. The shadow spaces on 1 of our motivating examples PG(V) and AG(V) are linear line spaces (in the sense that any two points are on a unique line; cf. Definition 2.5.13), and we will restrict ourselves mostly to geometries with this property. Within this class there are combinatorial structures such as matroids and Steiner systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. E.F. Assmus Jr., H.F. Mattson, On the number of inequivalent Steiner triple systems. J. Comb. Theory 1, 301–305 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Baer, Homogeneity of projective planes. Am. J. Math. 64, 137–152 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  3. R. Baer, Linear Algebra and Projective Geometry (Academic Press, New York, 1952)

    MATH  Google Scholar 

  4. B. Baumeister, A computer-free construction of the third group of Janko. J. Algebra 192, 780–809 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Baumeister, A.A. Ivanov, D.V. Pasechnik, A characterization of the Petersen-type geometry of the McLaughlin group. Math. Proc. Camb. Philos. Soc. 128, 21–44 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Beth, D. Jungnickel, H. Lenz, Design Theory (Cambridge University Press, Cambridge, 1986)

    MATH  Google Scholar 

  7. G. Birkhoff, Combinatorial relations in projective geometries. Ann. Math. (2) 36, 743–748 (1935)

    Article  MathSciNet  Google Scholar 

  8. G. Birkhoff, Lattice Theory, 3rd edn. American Mathematical Society Colloquium Publications, vol. XXV (American Mathematical Society, Providence, 1967)

    MATH  Google Scholar 

  9. A.E. Brouwer, The complement of a geometric hyperplane in a generalized polygon is usually connected, in Finite Geometry and Combinatorics, Proc. Deinze, 1992. London Math. Soc. Lect. Notes, vol. 191 (Cambridge University Press, Cambridge, 1993), pp. 53–57

    Chapter  Google Scholar 

  10. A.E. Brouwer, Block designs, in Handbook of Combinatorics, vol. 1 (Elsevier, Amsterdam, 1995), pp. 693–745

    Google Scholar 

  11. A.E. Brouwer, A.M. Cohen, A. Neumaier, Distance-Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18 (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  12. F. Buekenhout, Diagrams for geometries and groups. J. Comb. Theory, Ser. A 27, 121–151 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. F. Buekenhout, Diagram geometries for sporadic groups, in Finite Groups—Coming of Age, Montreal, Que., 1982. Contemp. Math., vol. 45 (American Mathematical Society, Providence, 1982), pp. 1–32

    Chapter  Google Scholar 

  14. R.D. Carmichael, Tactical configurations of rank two. Am. J. Math. 53, 217–240 (1931)

    Article  Google Scholar 

  15. W. Cherowitzo, Hyperovals in Desarguesian planes: an update. Discrete Math. 155, 31–38 (1996). Combinatorics (Acireale, 1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. P.M. Cohn, Algebra, vol. 2, 2nd edn. (Wiley, Chichester, 1989)

    MATH  Google Scholar 

  17. C.J. Colbourn, R. Mathon, Steiner systems, in Handbook of Combinatorial Designs 2nd edn. (Elsevier, Amsterdam, 2007), pp. 102–110

    Google Scholar 

  18. C.J. Colbourn, A. Rosa, Triple Systems. Oxford Mathematical Monographs (Clarendon, Oxford, 1999)

    MATH  Google Scholar 

  19. J.H. Conway, R.T. Curtis, R.A. Wilson, A brief history of the ATLAS, in The Atlas of Finite Groups: Ten Years on, Birmingham, 1995. London Math. Soc. Lecture Note Ser., vol. 249 (Cambridge University Press, Cambridge, 1998), pp. 288–293

    Chapter  Google Scholar 

  20. P. Dembowski, Finite Geometries. Classics in Mathematics (Springer, Berlin, 1997). Reprint of the 1968 original

    MATH  Google Scholar 

  21. P. Dembowski, A. Wagner, Some characterizations of finite projective spaces. Arch. Math. 11, 465–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Doyen, M. Vandensavel, Non isomorphic Steiner quadruple systems. Bull. Soc. Math. Belg. 23, 393–410 (1971). Collection of articles honoring P. Burniat, Th. Lepage and P. Libois

    MathSciNet  MATH  Google Scholar 

  23. D. Gorenstein, R. Lyons, R. Solomon, General group theory, in The Classification of the Finite Simple Groups. Number 2. Part I. Chap. G. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 1996)

    Google Scholar 

  24. D. Gorenstein, R. Lyons, R. Solomon, Almost simple K-groups, in The Classification of the Finite Simple Groups. Number 3. Part I. Chap. A. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 1998).

    Google Scholar 

  25. D. Gorenstein, R. Lyons, R. Solomon, Uniqueness theorems, in The Classification of the Finite Simple Groups. Number 4. Part II, Chaps. 1–4. Mathematical Surveys and Monographs Chaps., vol. 40 (American Mathematical Society, Providence, 1999). With errata: The Classification of the Finite Simple Groups. Number 3. Part I. Chap. A (Am. Math. Soc., Providence, 1998)

    Google Scholar 

  26. D. Gorenstein, R. Lyons, R. Solomon, The generic case, stages 1–3a, in The Classification of the Finite Simple Groups. Number 5. Part III. Chaps. 1–6. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 2002)

    Google Scholar 

  27. D. Gorenstein, R. Lyons, R. Solomon, The special odd case, in The Classification of the Finite Simple Groups. Number 6. Part IV. Mathematical Surveys and Monographs, vol. 40 (American Mathematical Society, Providence, 2005)

    Google Scholar 

  28. H. Gottschalk, D. Leemans, The residually weakly primitive geometries of the Janko group J 1, in Groups and Geometries, Siena, 1996. Trends Math. (Birkhäuser, Basel, 1998), pp. 65–79

    Chapter  Google Scholar 

  29. R.L. Griess Jr., Twelve Sporadic Groups. Springer Monographs in Mathematics (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  30. M. Hall Jr., Automorphisms of Steiner triple systems, in Proc. Sympos. Pure Math., vol. VI (American Mathematical Society, Providence, 1962), pp. 47–66

    Google Scholar 

  31. H. Hanani, On quadruple systems. Can. J. Math. 12, 145–157 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Hartman, Counting quadruple systems, in Proceedings of the Twelfth Southeastern Conference on Combinatorics, Graph Theory and Computing, Vol. II, vol. 33, Baton Rouge, La., 1981 (1981), pp. 45–54

    Google Scholar 

  33. D.G. Higman, C.C. Sims, A simple group of order 44,352,000. Math. Z. 105, 110–113 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Hilbert, Grundlagen der Geometrie, 14th edn. Teubner-Archiv zur Mathematik. Supplement [Teubner Archive on Mathematics. Supplement], vol. 6 (Teubner, Stuttgart, 1999). With supplementary material by Paul Bernays, With contributions by Michael Toepell, Hubert Kiechle, Alexander Kreuzer and Heinrich Wefelscheid, Edited and with appendices by Toepell

    MATH  Google Scholar 

  35. J.W.P. Hirschfeld, Projective Geometries over Finite Fields, 2nd edn. Oxford Mathematical Monographs (Clarendon/Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  36. D.R. Hughes, F.C. Piper, Projective Planes. Graduate Texts in Mathematics, vol. 6 (Springer, New York, 1973)

    MATH  Google Scholar 

  37. A.A. Ivanov, On geometries of the Fischer groups. Eur. J. Comb. 16, 163–183 (1995)

    Article  MATH  Google Scholar 

  38. A.A. Ivanov, Petersen and tilde geometries, in Geometry of Sporadic Groups. I. Encyclopedia of Mathematics and Its Applications, vol. 76 (Cambridge University Press, Cambridge, 1999)

    Chapter  Google Scholar 

  39. A.A. Ivanov, S.V. Shpectorov, A geometry for the O’Nan group connected with the Petersen graph. Russ. Math. Surv. 41, 211–212 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. A.A. Ivanov, S.V. Shpectorov, Representations and amalgams, in Geometry of Sporadic Groups. II. Encyclopedia of Mathematics and Its Applications, vol. 91 (Cambridge University Press, Cambridge, 2002)

    Chapter  Google Scholar 

  41. W.M. Kantor, Dimension and embedding theorems for geometric lattices. J. Comb. Theory, Ser. A 17, 173–195 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. W.M. Kantor, Some geometries that are almost buildings. Eur. J. Comb. 2, 239–247 (1981)

    MathSciNet  MATH  Google Scholar 

  43. P. Kaski, P.R.J. Östergård, The Steiner triple systems of order 19. Math. Comput. 73, 2075–2092 (2004) (electronic)

    Article  MATH  Google Scholar 

  44. P. Kaski, P.R.J. Östergård, O. Pottonen, The Steiner quadruple systems of order 16. J. Comb. Theory, Ser. A 113, 1764–1770 (2006)

    Article  MATH  Google Scholar 

  45. C.W.H. Lam, L. Thiel, S. Swiercz, The nonexistence of finite projective planes of order 10. Can. J. Math. 41, 1117–1123 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. D. Leemans, Two rank six geometries for the Higman-Sims sporadic group. Discrete Math. 294, 123–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Lenz, Zur Begründung der analytischen Geometrie. S.-B. Math. Nat. Kl. Bayer. Akad. Wiss. 1954, 17–72 (1954)

    MathSciNet  Google Scholar 

  48. H. Lüneburg, Ein neuer Beweis eines Hauptsatzes der projektiven Geometrie. Math. Z. 87, 32–36 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Lüneburg, Transitive Erweiterungen Endlicher Permutationsgruppen. Lecture Notes in Mathematics, vol. 84 (Springer, Berlin, 1969)

    MATH  Google Scholar 

  50. T. Meixner, On Weiss’ geometric characterization of the Rudvalis simple group. Forum Math. 10, 135–146 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Pickert, Projektive Ebenen. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, vol. LXXX (Springer, Berlin, 1955)

    Book  MATH  Google Scholar 

  52. E. Shult, A. Yanushka, Near n-gons and line systems. Geom. Dedic. 9, 1–72 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  53. J. Steiner, Combinatorische aufgabe. Pac. J. Math. 45, 181–182 (1853)

    MATH  Google Scholar 

  54. L. Teirlinck, On projective and affine hyperplanes. J. Comb. Theory, Ser. A 28, 290–306 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Tits, Les groupes de Lie exceptionnels et leur interprétation géométrique. Bull. Soc. Math. Belg. 8, 48–81 (1956)

    MathSciNet  MATH  Google Scholar 

  56. J. Tits, Ovoïdes et groupes de Suzuki. Arch. Math. 13, 187–198 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  57. H. van Maldeghem, A geometric characterization of the perfect Suzuki-Tits ovoids. J. Geom. 58, 192–202 (1997)

    MathSciNet  MATH  Google Scholar 

  58. O. Veblen, J.W. Young, Projective Geometry. Vols. 1, 2 (Blaisdell/Ginn, New York, 1965)

    Google Scholar 

  59. R. Weiss, A geometric characterization of the groups M 12, He and Ru. J. Math. Soc. Jpn. 43, 795–814 (1991)

    Article  MATH  Google Scholar 

  60. D.J.A. Welsh, Matroid Theory. L.M.S. Monographs, vol. 8 (Academic Press/Harcourt Brace Jovanovich, London, 1976)

    MATH  Google Scholar 

  61. H. Whitney, On the abstract properties of linear dependence. Am. J. Math. 57, 509–533 (1935)

    Article  MathSciNet  Google Scholar 

  62. R. Wilson, Nonisomorphic Steiner triple systems. Math. Z. 135, 303–313 (1974)

    Article  MATH  Google Scholar 

  63. E. Witt, Die 5-fach transitiven Gruppen von Mathieu. Abh. Math. Semin. Hans. Univ. 12, 256–264 (1938)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buekenhout, F., Cohen, A.M. (2013). Linear Geometries. In: Diagram Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34453-4_5

Download citation

Publish with us

Policies and ethics