Skip to main content

Machine Translation at Work

  • Chapter
Computational Linguistics

Abstract

Machine translation (MT) is - not only historically - a prime application of language technology. After years of seeming stagnation, the price pressure on language service providers (LSPs) and the increased translation need have led to new momentum for the inclusion of MT in industrial translation workflows. On the research side, this trend is backed by improvements in translation performance, especially in the area of hybrid MT approaches. Nevertheless, it is clear that translation quality is far from perfect in many applications. Therefore, human post-editing today seems the only way to go. This chapter reports on a system that is being developed as part of taraXŰ, an ongoing joint project between industry and research partners. By combining state-of-the-art language technology applications, developing informed selection mechanisms using the outputs of different MT engines, and incorporating qualified translator feedback throughout the development process, the project aims to make MT economically feasible and technically usable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alonso, J., Thurmair, G., Deutschland, C.: The Comprendium Translator System. In: Proceedings of the Ninth Machine Translation Summit, New Orleans (2003)

    Google Scholar 

  2. Avramidis, E.: DFKI System Combination with Sentence Ranking at ML4HMT-2011. In: Proceedings of the International Workshop on Using Linguistic Information for Hybrid Machine Translation and of the Shared Task on Applying Machine Learning Techniques to Optimising the Division of Labour in Hybrid Machine Translation, San Francisco (2011)

    Google Scholar 

  3. Burchardt, A., Egg, M., Eichler, K., Krenn, B., Kreutel, J., Leßmöllmann, A., Rehm, G., Stede, M., Uszkoreit, H.: The German Language in the Digital Age. Springer (2012)

    Google Scholar 

  4. Callison-Burch, C., Fordyce, C., Koehn, P., et al.: Further Meta-Evaluation of Machine Translation. In: Proceedings of the Third Workshop on Statistical Machine Translation, pp. 70–106. Association for Computational Linguistics, Columbus (2008)

    Chapter  Google Scholar 

  5. Callison-Burch, C., Koehn, P., Monz, C., et al.: Findings of the 2010 Joint Workshop on Statistical Machine Translation and Metrics for Machine Translation. Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and Metrics, pp. 17–53. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  6. Callison-Burch, C., Osborne, M., Koehn, P.: Re-evaluating the Role of Bleu in Machine Translation Research. In: Proceedings of the 11th Conference of the European Chapter of the Association for Computational Linguistics, Trento, pp. 249–256 (2006)

    Google Scholar 

  7. Carroll, S.: Introducing the TRADOS workflow development. Translating and the Computer 22. Aslib Proceedings, London (2000)

    Google Scholar 

  8. Casacuberta, F., Civera, J., Cubel, E., et al.: Human Interaction for High Quality Machine Translation. Communications of the ACM 52, 135–138 (2007)

    Article  Google Scholar 

  9. Chen, Y., Jellinghaus, M., Eisele, A., et al.: Combining Multi-Engine Translations with Moses. In: Proceedings of the Fourth Workshop on Statistical Machine Translation, pp. 42–46. Association for Computational Linguistics, Athens (2009)

    Chapter  Google Scholar 

  10. Federmann, C.: Appraise: An Open-Source Toolkit for Manual Phrase-Based Evaluation of Translations. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, Valletta (2010)

    Google Scholar 

  11. Federmann, C., Avramidis, E., Costa-Jussa, M.R., et al.: The ML4HMT Workshop on Optimising the Division of Labour in Hybrid Machine Translation. In: Proceedings of the Twelfths International Conference on Language Resources and Evaluation, Istanbul (2012)

    Google Scholar 

  12. Federmann, C., Theison, S., Eisele, A., et al.: Translation Combination using Factored Word Substitution. In: Proceedings of the Fourth Workshop on Statistical Machine Translation, pp. 70–74. Association for Computational Linguistics, Athens (2009)

    Chapter  Google Scholar 

  13. Koehn, P.: Europarl: A Parallel Corpus for Statistical Machine Translation. In: Proceedings of the Tenth Machine Translation Summit, Phuket (2005)

    Google Scholar 

  14. Koehn, P.: A Process Study of Computer-aided Translation. Machine Translation 23, 241–263 (2009)

    Article  Google Scholar 

  15. Koehn, P., Hoang, H., Birch, A., et al.: Moses: Open Source Toolkit for Statistical Machine Translation. In: Proceedings of the Forty-Fifth Annual Meeting of the Association for Computational Linguistics, pp. 177–180. Association for Computational Linguistics, Prague (2007)

    Google Scholar 

  16. Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 159–174 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. Levenshtein, V.: Binary Codes Capable of Correcting Deletions and Insertions and Reversals. Soviet Physics Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  18. Li, Z., Callison-Burch, C., Dyer, C., et al.: Joshua 2.0: A Toolkit for Parsing-Based Machine Translation with Syntax, Semirings, Discriminative Training and Other Goodies. In: Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and Metrics, pp. 133–137. Association for Computational Linguistics, Uppsala (2010)

    Google Scholar 

  19. Papineni, K., Roukos, S., Ward, T., Zhu, W.-J.: BLEU: A Method for Automatic Evaluation of Machine Translation. In: Proceedings of the Fortieths Annual Meeting of the Association for Computational Linguistics, pp. 311–318. Association for Computational Linguistics, Pennsylvania (2002)

    Google Scholar 

  20. Popovic, M., Burchardt, A.: From Human to Automatic Error Classification for Machine Translation Output. In: Proceedings of the Fifteenth International Conference of the European Association for Machine Translation, Leuven (2011)

    Google Scholar 

  21. Schwall, U., Thurmair, G.: From METAL to T1: Systems and Components for Machine Translation Applications. In: Proceedings of the Sixth Machine Translation Summit, pp. 180–190 (1997)

    Google Scholar 

  22. Scott, W.A.: Reliability of Content Analysis: The Case of Nominal Scale Coding. Public Opinion Quarterly 19, 321–325 (1955), doi:10.1086/266577

    Article  Google Scholar 

  23. Specia, L.: Exploiting Objective Annotations for Measuring Translation Post-editing Effort. In: Proceedings of the Fifteenth International Conference of the European Association for Machine Translation, Leuven (2011)

    Google Scholar 

  24. Tiedemann, J.: News from OPUS—A Collection of Multilingual Parallel Corpora with Tools and Interfaces. Recent Advances in Natural Language Processing 5, 237–248 (2009)

    Google Scholar 

  25. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support Vector Machine Learning for Interdependent and Structured Output Spaces. In: Proceedings of the Twenty-First International Conference on Machine Learning, Banff, Alberta (2004)

    Google Scholar 

  26. Vilar, D., Xu, J., D’Haro, L.F., Ney, H.: Error Analysis of Machine Translation Output. In: Proceedings of the Fifth International Conference on Language Resources and Evaluation, Genoa, pp. 697–702 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aljoscha Burchardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burchardt, A., Tscherwinka, C., Avramidis, E., Uszkoreit, H. (2013). Machine Translation at Work. In: Przepiórkowski, A., Piasecki, M., Jassem, K., Fuglewicz, P. (eds) Computational Linguistics. Studies in Computational Intelligence, vol 458. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34399-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34399-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34398-8

  • Online ISBN: 978-3-642-34399-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics