Twenty Years of Topological Logic

  • Ian Pratt-Hartmann
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Topological logics are formal systems for representing and manipulating information about the topological relationships between objects in space. Over the past two decades, these logics have been the subject of intensive research in Artificial Intelligence, under the general rubric of Qualitative Spatial Reasoning. This chapter sets out the mathematical foundations of topological logics, and surveys some of their many surprising properties.


Spatial logic Qualitative spatial reasoning Artificial Intelligence 



The author wishes to thank the Interdisciplinary Transregional Collaborative Research Center Spatial Cognition: Reasoning, Action, Interaction, University of Bremen, for their kind hospitality and generous support during the writing of this paper.


  1. Bennett B (1997) Determining consistency of topological relations. Constraints 3:1–13Google Scholar
  2. Clarke BL (1981) A calculus of individuals based on ‘connection’. Notre Dame J Formal Logic 23:204–218CrossRefGoogle Scholar
  3. Clarke BL (1985) Individuals and points. Notre Dame J Formal Logic 26:061–75CrossRefGoogle Scholar
  4. de Vries H (1962) Compact spaces and compactifications, an algebraic approach. Van Gorcum & Co. N.V., Assen, NetherlandsGoogle Scholar
  5. Dimov G, Vakarelov D (2006) Contact algebras and region-based theory of space: a proximity approach. Fund. Informaticae 740(2–3):0 209–249Google Scholar
  6. Dornheim C (1998) Undecidability of plane polygonal mereotopology. In: Proceedings of KR’98, Morgan Kaufmann, San Francisco, pp 342–353Google Scholar
  7. Düntsch I, Winter M (2005) A representation theorem for Boolean contact algebras. Theor Comput Sci 347:498–512CrossRefGoogle Scholar
  8. Egenhofer M, Franzosa R (1991) Point-set topological spatial relations. Int J Geogr Info Syst 5:161–174CrossRefGoogle Scholar
  9. Griffiths A (2008) Computational properties of spatial logics in the real plane. PhD thesis, School of Computer Science, U. ManchesterGoogle Scholar
  10. Grzegorczyk A (1951) Undecidability of some topological theories. Fundamenta Mathematicae 38:137–152Google Scholar
  11. Kontchakov R, Pratt-Hartmann I, Wolter F, Zakharyaschev M (2010a) The complexity of spatial logics with connectedness predicates. Logical Methods Comp Sci 60 (3:7)Google Scholar
  12. Kontchakov R, Pratt-Hartmann I, Zakharyaschev M (2010b) Interpreting topological logics over Euclidean spaces. In Proceedings of KR, AAAI Press, California, pp 534–544Google Scholar
  13. Kontchakov R, Nenov Y, Pratt-Hartmann I, Zakharyaschev M (2011) On the decidability of connectedness constraints in 2D and 3D Euclidean spaces. In Proceedings IJCAI, AAAI Press, California, pp 957–962Google Scholar
  14. Kuijpers B, Paredaens J, van den Bussche J (1995) Lossless representation of topological spatial data. In Advances in spatial databases, vol 951, LNCS, Springer, Berlin, pp 1–13Google Scholar
  15. McKinsey JCC, Tarski A (1944) The algebra of topology. Ann Math 45:141–191CrossRefGoogle Scholar
  16. Nutt W (1999) On the translation of qualitative spatial reasoning problems into modal logics. In Proceedings of KI, vol 1701, LNCS, Springer, Berlin, pp 113–124Google Scholar
  17. Papadimitriou CH, Suciu D, Vianu V (1999) Topological queries in spatial databases. J Comp Syst Sci 580(1):29–53Google Scholar
  18. Pratt I, Lemon O (1997) Ontologies for plane, polygonal mereotopology. Notre Dame J Formal Logic 380(2):225–245Google Scholar
  19. Pratt I, Schoop D (2002) Elementary polyhedral mereotopology. J Phil Logic 31:461–498Google Scholar
  20. Pratt I, Schoop D (2000) Expressivity in polygonal, plane mereotopology. J Symb Logic 650(2):822–838Google Scholar
  21. Pratt-Hartmann I (2007) First-order mereotopology. In: Aiello M, Pratt-Hartmann I, van Benthem J (eds) Handbook of spatial logics. Springer, Berlin, pp 13–97Google Scholar
  22. Randell D, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Proceedings of KR, Morgan Kaufmann, San Mateo, pp 165–176Google Scholar
  23. Renz J (1998) A canonical model of the region connection calculus. In: Cohn A (ed) Proceedings of KR, Morgan Kaufmann, pp 330–341Google Scholar
  24. Renz J (1999) Maximal tractable fragments of the region connection calculus: a complete analysis. In: Proceedings of IJCAI, Morgan Kaufmann, pp 448–454Google Scholar
  25. Renz J, Nebel B (1999) On the complexity of qualitative spatial reasoning. Artif Intell 108:69–123CrossRefGoogle Scholar
  26. Renz J, Nebel B (2001) Efficient methods for qualitative spatial reasoning. J Artif Intell Res 15:289–318Google Scholar
  27. Renz J, Nebel B (2007) Qualitative spatial reasoning using constraint calculi. In: Aiello M et al Handbook of spatial logics, Springer, pp 161–216Google Scholar
  28. Roeper P (1997) Region-based topology. J Phil Logic 26:251–309CrossRefGoogle Scholar
  29. Schaefer M, Sedgwick E, Štefankovič D (2003) Recognizing string graphs in NP. J Comp Syst Sci 67:365–380CrossRefGoogle Scholar
  30. Schoop D (1999) A model-theoretic approach to mereotopology. PhD thesis, School of Computer Science, U. Manchester, 1999Google Scholar
  31. Tarski A (1956) Foundations of the geometry of solids. In: Logic, semantics, metamathematics, Clarendon Press, Oxford, pp 24–29Google Scholar
  32. Whitehead AN (1929) Process and reality. MacMillan, New YorkGoogle Scholar
  33. Wolter F, Zakharyaschev M (2000) Spatial reasoning in RCC-8 with boolean region terms. In: Proceedings of ECAI, IOS, pp 244–248Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations