Skip to main content

Generalized Linear Models

  • Chapter
  • First Online:
Regression

Abstract

Linear models are well suited for regression analyses when the response variable is continuous and at least approximately normal. In some cases, an appropriate transformation is needed to ensure approximate normality of the response. In addition, the expectation of the response is assumed to be a linear combination of covariates. Again, these covariates may be transformed before being included in the linear predictor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Albert, J., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Cameron, A. C., & Trivedi, P. K. (1998). Regression analysis of count data. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: Methods and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006). Measurement error in nonlinear models (2nd ed.). New York/Boca Raton: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Collett, D. (1991). Modelling binary data. New York/Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Collett, D. (2003). Modelling survival data in medical research (2nd ed.). New York/Boca Raton: Chapman & Hall/CRC.

    Google Scholar 

  • Dellaportas, P., & Smith, A. F. M. (1993). Bayesian inference for generalized linear and proportional hazards models via Gibbs sampling. Applied Statistics, 42, 443–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Dey, D., Gosh, S. K., & Mallick, B. K. (2000). Generalized linear models: A Bayesian Perspective. New York: Marcel Dekker.

    MATH  Google Scholar 

  • Diggle, P. J., Heagerty, P., Liang, K. L., & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Fahrmeir, L., Hamerle, A., & Tutz, G. (1996). Multivariate Statistische Verfahren (second edition), De Gruyter.

    Google Scholar 

  • Fahrmeir, L., & Kaufmann, H. (1985). Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. The Annals of Statistics, 13, 342–368.

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L., & Tutz, G. (2001). Multivariate statistical modelling based on generalized linear models (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28, 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Frühwirth-Schnatter, S., & Frühwirth, R. (2010). Data augmentation and MCMC for binary and multinomial logit models. In T. Kneib, & G. Tutz (Eds.), Statistical modelling and regression structures: Festschrift in honour of Ludwig Fahrmeir (pp. 111–132). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Frühwirth-Schnatter, S., Frühwirth, R., Held, L., & Rue, H. (2009). Improved auxiliary mixture sampling for hierarchical models of non-Gaussian data. Statistics and Computing, 19, 479–492.

    Article  MathSciNet  Google Scholar 

  • Frühwirth-Schnatter, S., & Wagner, H. (2006). Gibbs sampling for parameter-driven models of time series of small counts with application to state space modelling. Biometrika, 93, 827–841.

    Article  MathSciNet  Google Scholar 

  • Gamerman, D. (1997). Efficient sampling from the posterior distribution in generalized linear mixed models. Statistics and Computing, 7, 57–68.

    Article  Google Scholar 

  • Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t distribution subject to linear constraints. Computer science and statistics: Proceedings of the twenty-third symposium on the interface (pp. 571–578). Alexandria.

    Google Scholar 

  • Holmes, C. C., & Held, L. (2006). Bayesian auxiliary variable models for binary and multinomial regression. Bayesian Analysis, 1, 145–168.

    Article  MathSciNet  Google Scholar 

  • Hosmer, D. W., Lemeshow, S., & May, S. (2008). Applied survival analysis: Regression modeling of time to event data. New York: Wiley.

    Book  MATH  Google Scholar 

  • Joe, H. (1997). Multivariate models and dependence concepts. New York/Boca Raton: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • Kleiber, C., & Zeileis, A. (2008). Applied econometrics with R. New York: Springer.

    Book  MATH  Google Scholar 

  • Klein, J. P., & Moeschberger, M. L. (2005). Survival analysis (2nd edn.). New York: Springer.

    MATH  Google Scholar 

  • Lenk, P., & DeSarbo, W. (2000). Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika, 65, 93–119.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). New York/ Boca Raton: Chapman & Hall/CRC.

    MATH  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society A, 135, 370–384.

    Article  Google Scholar 

  • Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Applied Statistics, 54, 507–554.

    MathSciNet  MATH  Google Scholar 

  • Robert, C. P. (1995). Simulation of truncated normal variables. Statistics and Computing, 5, 121–125.

    Article  MATH  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modelling. New York/ Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Therneau, T., & Grambsch, P. (2000). Modeling survival data: Extending the Cox model. New York: Springer.

    MATH  Google Scholar 

  • Tutz, G. (2011). Regression for categorical data. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Winkelmann, R. (2010a). Analysis of microdata (2nd ed.). Heidelberg: Springer.

    Google Scholar 

  • Winkelmann, R. (2010b). Econometric analysis of count data (5th ed.). Berlin: Springer.

    Google Scholar 

  • Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in r. Journal of Statistical Software, 27(8), 1–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fahrmeir, L., Kneib, T., Lang, S., Marx, B. (2013). Generalized Linear Models. In: Regression. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34333-9_5

Download citation

Publish with us

Policies and ethics