Advertisement

Simulation of Flexible Objects in Robotics

  • Andreas Rune Fugl
  • Henrik Gordon Petersen
  • Morten Willatzen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7628)

Abstract

In this paper, we present what appears to be the first simulation model for grasping of flexible bodies based on the three-dimensional elastic constitutive relations and Newton’s Second Law for solids known as the Navier-Cauchy equations. We give an overview of the most important equations for strain, stress, and elasticity tensors based on which we outline the format of the Navier-Cauchy equations of motion in the general anisotropic case. We then specifically study the equations for homogeneous isotropic bodies. We formulate a numerical scheme based on finite differences for solving the equations. Finally, we present preliminary experimental work and outline future directions.

Keywords

robotics grasping elasticity finite difference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, A.T.: Graspit!: A versatile simulator for robotic grasping. PhD thesis, Citeseer (2001)Google Scholar
  2. 2.
    Program, A., Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dynamics, 231–247 (1997)Google Scholar
  3. 3.
    León, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M., Morales, A., Asfour, T., Moisio, S., Bohg, J., Kuffner, J., Dillmann, R.: OpenGRASP: A Toolkit for Robot Grasping Simulation. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 109–120. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Jørgensen, J., Ellekilde, L., Petersen, H.: RobWorkSim - an Open Simulator for Sensor based Grasping. In: ISR/ROBOTIK 2010 (2010)Google Scholar
  5. 5.
    Nguyen, B., Trinkle, J.: dvc3D: a three dimensional physical simulation tool for rigid bodies with contacts and Coulomb friction. In: The 1st Joint International Conference on Multibody System Dynamics (2010)Google Scholar
  6. 6.
    Johns, J.: Rayleigh waves in a poroelastic half-space. Journal of Acoustical Society of America, 952–962 (1961)Google Scholar
  7. 7.
    Willatzen, M.: Exact power series solutions to axisymmetric vibrations of circular and annular membranes with continuously varying density in the general case. Journal of Sound and Vibration, 981–986 (2002)Google Scholar
  8. 8.
    Schliwa, A., Winkelnkemper, M., Bimberg, D.: Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)AsGaAs quantum dots. Phys. Rev. B (2007)Google Scholar
  9. 9.
    COMSOL: COMSOL Multiphysics, Burlington, MA (2011)Google Scholar
  10. 10.
    Binder, J.B.: Algor finite element modeling tools aid aerospace. Aerospace America (1995)Google Scholar
  11. 11.
    ANSYS: ANSYS Structural, Canonsburg, PA (2011)Google Scholar
  12. 12.
    Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London, 307–357 (1911)Google Scholar
  13. 13.
    Mosegaard, J.: Cardiac Surgery Simulation - Graphics Hardware meets Congenital Heart Disease. PhD thesis, Department of Computer Science, University of Aarhus, Denmark (October 2006)Google Scholar
  14. 14.
    Bell, M.: Flexible object manipulation. PhD thesis, Dartmouth College Hanover, New Hampshire (2010)Google Scholar
  15. 15.
    Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., Kosevich, A.M.: Theory of Elasticity, 3rd edn. Butterworth-Heinemann (1986)Google Scholar
  16. 16.
    Feynman, R.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Boston (1963)Google Scholar
  17. 17.
    Russell, D.L., White, L.: An elementary nonlinear beam theory with finite buckling deformation properties. SIAM Journal of Applied Mathematics, 1394–1413 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Rune Fugl
    • 1
    • 2
  • Henrik Gordon Petersen
    • 1
  • Morten Willatzen
    • 2
  1. 1.The Maersk Mc-Kinney Moller InstituteUniversity of Southern DenmarkDenmark
  2. 2.The Mads Clausen InstituteUniversity of Southern DenmarkDenmark

Personalised recommendations