A Differential-Algebraic Multistate Friction Model

  • Xiaogang Xiong
  • Ryo Kikuuwe
  • Motoji Yamamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7628)

Abstract

Fidelity with friction properties and easiness of implementation are both important aspects for friction modeling. Some empirically motivated models can be implemented easily due to their simple expression and small number of parameters, but they cannot capture faithfully the main properties of friction. Some physically motivated models give close agreement with the friction properties, but they can be too complex for some applications. This paper proposes a differential-algebraic multistate friction model that possesses easiness of implementation and adjustment, a relatively small number of parameters and a compact formulation. Moreover, it captures all standard properties of well-established friction models.

Keywords

Stick-slip behavior Nondrifting property Hysteresis with nonlocal memory Frictional lag Rate-independent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Bender, F., Lampaert, V., Swevers, J.: The generalized maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. on Automatic Control 50(11), 1883–1887 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dahl, P.: A solid friction model. Tech. rep., Aerospace Corporation, El Segundo, CA (1968)Google Scholar
  3. 3.
    Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of sytem with friction. IEEE Trans. on Automatic Control 40(3), 419–425 (1995)MATHCrossRefGoogle Scholar
  4. 4.
    Åström, K.J., Canudas-de-Wit, C.: Revisting the LuGre friction model. IEEE Control Systems Magazine 28(6), 101–114 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic friction models. IEEE Trans. on Automatic Control 47(5), 787–792 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans. on Automatic Control 45(4), 675–686 (2000)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level for dry friction force dynamics. Tribology Letters 16(1-2), 81–93 (2004)CrossRefGoogle Scholar
  8. 8.
    Moerlooze, K.D., Al-Bender, F., Brussel, H.V.: A generalized asperity-based friction model. Tribology Letters 40(1), 113–130 (2010)CrossRefGoogle Scholar
  9. 9.
    Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Control Systems Magazine 28(6), 64–81 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macrosopic measurements. Tribology Letters 16(1-2), 95–105 (2004)CrossRefGoogle Scholar
  11. 11.
    Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the leuven integrated friction model structure. IEEE Trans. on Automatic Control 47(4), 683–687 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lampaert, V., Al-Bender, F., Swevers, J.: A generalized maxwell-slip friction model appropriate for control purposes. In: Proc. of IEEE International Conference on Physics and Control, St. Petersburg, Russia, pp. 1170–1177 (2003)Google Scholar
  13. 13.
    Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dynamic response. Trans. ASME: J. of Applied Mechanics 33(4), 893–900 (1966)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goldfarb, M., Celanovic, N.: A lumped parameter electromechnical model for describing the nonlinear behavior of piezoelectric actuators. Trans. ASME: J. of Dynamic Systems, Measurement, and Control 119, 478–485 (1997)MATHCrossRefGoogle Scholar
  15. 15.
    Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Pergamon Press, London (1968)Google Scholar
  16. 16.
    Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. Submitted to Multibody System DynamicsGoogle Scholar
  17. 17.
    Kikuuwe, R., Yasukouchi, S., Fujimoto, H., Yamamoto, M.: Proxy-based sliding mode control: a safer extension of PID position control. IEEE Trans. on Robotics 26(4), 670–683 (2010)CrossRefGoogle Scholar
  18. 18.
    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. LNACM, vol. 18. Springer, Berlin (2004)MATHGoogle Scholar
  19. 19.
    Brogliato, B., Daniilidis, A., Lemarechal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems & Control Letters 55(1), 45–51 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. on Robotics 22(6), 1176–1188 (2006)CrossRefGoogle Scholar
  21. 21.
    Gonthier, Y., Mcphee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody System Dynamics 11(3), 209–233 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiaogang Xiong
    • 1
  • Ryo Kikuuwe
    • 1
  • Motoji Yamamoto
    • 1
  1. 1.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations