Skip to main content

Molecular Imaging Techniques in Clinical Practice of Tumors

  • Chapter
  • 3667 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

It has been more than one hundred years since the X-ray was discovered by W. K. Roentgen in 1895. In this period, the science of radiology has experienced tremendous development. By providing a more direct and objective way to explore the status of diseases, radiology is now acting as an indispensable part of clinical practice, especially in cancers which have increasing incidences and are life-threatening. Radiology plays an important role in all aspects, from early detection and diagnosis to treatment monitoring, efficacy evaluation and recurrence approach. When the routine imaging methods have shown their limitations under the rapid development of modern medicine, molecular imaging began to enter this area with specialities in exploring the essence of diseases on molecular and cellular levels. In this chapter, we focus on the clinical practice of tumors. Current applications and prospects of molecular imaging in this area will be discussed from various aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal, A., R. C. Tiwari, T. Murray, et al. (2004). “Cancer statistics”, CA: A Cancer Journal for Clinicians 54: 8–29.

    Article  Google Scholar 

  2. Fujikawa, A., Y. Takiguchi, S. Mizuno, et al. (2008). “Lung cancer screening—comparison of computed tomography and X-ray”, Lung Cancer 61: 195–201.

    Article  PubMed  Google Scholar 

  3. Pastorino, U., M. Bellomi, C. Landoni, et al. (2003). “Early lung-cancer detection with spiral CT and positron emission tomography in heavy smokers: 2-year results”, Lancet 362: 593–597.

    Article  PubMed  Google Scholar 

  4. Winer-Muram, H. T. (2006). “The solitary pulmonary nodule”, Radiology 239: 34–49.

    Article  PubMed  Google Scholar 

  5. Schrevens, L., N. Lorent, C. Dooms, J. Vansteenkiste (2004). “The role of PET scan in diagnosis, staging, and management of non-small cell lung cancer”, Oncologist 9: 633–643.

    Article  PubMed  Google Scholar 

  6. Buck, A. K., G. Halter, H. Schirrmeister, et al. (2003). “Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG”, Journal of Nuclear Medicine 44: 1426–1431.

    PubMed  CAS  Google Scholar 

  7. Tian, M., H. Zhang, N. Oriuchi, T. Higuchi & K. Endo (2004). “Comparison of 11C-choline PET and FDG PET for the differential diagnosis of malignant tumors”, European Journal of Nuclear Medicine and Molecular Imaging 31: 1064–1072.

    PubMed  CAS  Google Scholar 

  8. Baluk, P., S. Morikawa, A. Haskell, M. Mancuso & D. M. McDonald (2003). “Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors”, American Journal of Pathology 163: 1801–1815.

    Article  PubMed  Google Scholar 

  9. Yi, C. A., K. S. Lee, E. A. Kim, et al. (2004). “Solitary pulmonary nodules: dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and microvessel density”, Radiology 233: 191–199.

    Article  PubMed  Google Scholar 

  10. Swensen, S. J., R. W. Viggiano, D. E. Midthun, et al. (2000). “Lung nodule enhancement at CT: Multicenter study”, Radiology 214: 73–80.

    PubMed  CAS  Google Scholar 

  11. Schaefer, J. F., J. Vollmar, F. Schick, et al. (2004). “Solitary pulmonary nodules: dynamic contrast-enhanced MR imaging—perfusion differences in malignant and benign lesions”, Radiology 232: 544–553.

    Article  PubMed  Google Scholar 

  12. Fujimoto, K., T. Abe, N. L. Muller, et al. (2003). “Small peripheral pulmonary carcinomas evaluated with dynamic MR imaging: Correlation with tumor vascularity and prognosis”, Radiology 227: 786–793.

    Article  PubMed  Google Scholar 

  13. Ohno, Y., H. Hatabu, D. Takenaka, et al. (2004). “Dynamic MR imaging: Value of differentiating subtypes of peripheral small adenocarcinoma of the lung”, European Journal of Radiology 52: 144–150.

    Article  PubMed  Google Scholar 

  14. Le Bihan, D., P. Douek, M. Argyropoulou, R. Turner, N. Patronas & M. Fulham (1993). “Diffusion and perfusion magnetic resonance imaging in brain tumors”, Topics in Magnetic Resonance Imaging 5: 25–31.

    Article  PubMed  Google Scholar 

  15. Wetzel, S. G., S. Cha, M. Law, et al. (2002). “Preoperative assessment of intracranial tumors with perfusion MR and a volumetric interpolated examination: A comparative study with DSA”, American Journal of Neuroradiology 23: 1767–1774.

    PubMed  Google Scholar 

  16. Cha, S., E. A. Knopp, G. Johnson, S. G. Wetzel, A. W. Litt & D. Zagzag (2002). “Intracranial mass lesions: Dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging”, Radiology 223: 11–29.

    Article  PubMed  Google Scholar 

  17. Castillo, M., L. Kwock, J. Scatliff & S. K. Mukherji (1998). “Proton MR spectroscopy in neoplastic and non-neoplastic brain disorders”, Magnetic Resonance Imaging Clinics of North America 6: 1–20.

    PubMed  CAS  Google Scholar 

  18. Fulham, M. J., A. Bizzi, M. J. Dietz, et al. (1992). “Mapping of brain tumor metabolites with proton MR spectroscopic imaging: Clinical relevance”, Radiology 185: 675–686.

    PubMed  CAS  Google Scholar 

  19. Law, M., S. Yang, H. Wang, et al. (2003). “Glioma grading: Sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging”, American Journal of Neuroradiology 24: 1989–1998.

    PubMed  Google Scholar 

  20. Galanaud, D., O. Chinot, F. Nicoli, et al. (2003). “Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma”, Journal of Neurosurgery 98: 269–276.

    Article  PubMed  Google Scholar 

  21. Gupta, R. K., U. Sinha, T. F. Cloughesy & J. R. Alger (1999). “Inverse correlation between choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma”, Magnetic Resonance Med 41: 2–7.

    Article  CAS  Google Scholar 

  22. Chenevert, T. L., L. D. Stegman, J. M. Taylor, et al. (2000). “Diffusion magnetic resonance imaging: An early surrogate marker of therapeutic efficacy in brain tumors”, Journal of the National Cancer Institute 92: 2029–2036.

    Article  PubMed  CAS  Google Scholar 

  23. Law, M., S. Cha, E. A. Knopp, G. Johnson, J. Arnett & A. W. Litt (2002). “High-grade gliomas and solitary metastases: Differentiation by using perfusion and proton spectroscopic MR imaging”, Radiology 222: 715–721.

    Article  PubMed  Google Scholar 

  24. Gharib, A. M., D. Thomasson & K. C. Li (2004). “Molecular imaging of hepatocellular carcinoma”, Gastroenterology 127: S153–158.

    Article  PubMed  CAS  Google Scholar 

  25. Khandani, A. H. & R. L. Wahl (2005). “Applications of PET in liver imaging”, Radiologic Clinics of North America 43: 849–860.

    Article  PubMed  Google Scholar 

  26. Ho, C. L., S. C. Yu & D. W. Yeung (2003). “11C-acetate PET imaging in hepatocellular carcinoma and other liver masses”, Journal of Nuclear Medicine 44: 213–221.

    PubMed  Google Scholar 

  27. Francis, D. L., D. Visvikis, D. C. Costa, et al. (2004). “Assessment of recurrent colorectal cancer following 5-fluorouracil chemotherapy using both 18FDG and 18FLT PET”, European Journal of Nuclear Medicine and Molecular Imaging 31: 928.

    Article  PubMed  CAS  Google Scholar 

  28. Reimer, P., G. Schneider & W. Schima (2004). “Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: Properties, clinical development and applications”, European Radiology 14: 559–578.

    Article  PubMed  Google Scholar 

  29. Oudkerk, M., C. G. Torres, B. Song, et al. (2002). “Characterization of liver lesions with mangafodipir trisodium-enhanced MR imaging: Multicenter study comparing MR and dual-phase spiral CT”, Radiology 223: 517–524.

    Article  PubMed  Google Scholar 

  30. Pirovano, G., A. Vanzulli, L. Marti-Bonmati, et al. (2000). “Evaluation of the accuracy of gadobenate dimeglumine-enhanced MR imaging in the detection and characterization of focal liver lesions”, American Journal of Roentgenology 175: 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  31. Grazioli, L., G. Morana, M. A. Kirchin & G. Schneider (2005). “Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadobenate dimeglumine-enhanced MR imaging: Prospective study”, Radiology 236: 166–177.

    Article  PubMed  Google Scholar 

  32. Vogl, T. J., W. Schwarz, S. Blume, et al. (2003). “Preoperative evaluation of malignant liver tumors: Comparison of unenhanced and SPIO (Resovist)-enhanced MR imaging with biphasic CTAP and intraoperative US”, European Radiology 13: 262–272.

    PubMed  Google Scholar 

  33. Kumano, S., T. Murakami, T. Kim, et al. (2003).“Using superparamagnetic iron oxide-enhanced MRI to differentiate metastatic hepatic tumors and nonsolid benign lesions”, American Journal of Roentgenology 181: 1335–1339.

    Article  PubMed  Google Scholar 

  34. Corot, C., P. Robert, J. M. Idee & M. Port (2006). “Recent advances in iron oxide nanocrystal technology for medical imaging”, Advanced Drug Delivery Reviews 58: 1471–1504.

    Article  PubMed  CAS  Google Scholar 

  35. Iagaru, A., M. L. Goris & S. S. Gambhir (2008). “Perspectives of molecular imaging and radioimmunotherapy in lymphoma”, Radiologic Clinics of North America 46: 243–252, viii.

    Article  PubMed  Google Scholar 

  36. Jhanwar, Y. S. & D. J. Straus (2006). “The role of PET in lymphoma”, Journal of Nuclear Medicine 47: 1326–1334.

    PubMed  Google Scholar 

  37. Kwee, T. C., R. M. Kwee & R. A. Nievelstein (2008). “Imaging in staging of malignant lymphoma: A systematic review”, Blood 111: 504–516.

    Article  PubMed  CAS  Google Scholar 

  38. Pelosi, E., P. Pregno, D. Penna, et al. (2008). “Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma”, Radiologia Medica 113: 578–590.

    Article  PubMed  CAS  Google Scholar 

  39. Tatsumi, M., C. Cohade, Y. Nakamoto, E. K. Fishman & R. L. Wahl (2005). “Direct comparison of FDG PET and CT findings in patients with lymphoma: initial experience”, Radiology 237: 1038–1045.

    Article  PubMed  Google Scholar 

  40. Terasawa, T., J. Lau, S. Bardet, et al. (2009). “Fluorine-18-fluorodeoxyglucose positron emission tomography for interim response assessment of advancedstage Hodgkin’s lymphoma and diffuse large B-cell lymphoma: A systematic review”, Journal of Clinical Oncology 27: 1906–1914.

    Article  PubMed  Google Scholar 

  41. Yang, W. T., D. L. Lane, H. T. Le-Petross, L. V. Abruzzo & H. A. Macapinlac (2007). “Breast lymphoma: Imaging findings of 32 tumors in 27 patients”, Radiology 245: 692–702.

    Article  PubMed  Google Scholar 

  42. Cheson, B (2009). “The case against heavy PETing”, Journal of Clinical Oncology 27: 1742–1743.

    Article  PubMed  Google Scholar 

  43. Krohmer, S., I. Sorge, A. Krausse, et al. (2009). “Whole-body MRI for primary evaluation of malignant disease in children”, European Journal of Radiology

    Google Scholar 

  44. Li, S., H. D. Xue, J. Li, et al. (2008). “Application of whole body diffusion weighted MR imaging for diagnosis and staging of malignant lymphoma”, Chinese Medical Sciences Journal 23: 138–144.

    Article  PubMed  CAS  Google Scholar 

  45. Peters, N. H., I. H. Borel Rinkes, N. P. Zuithoff, W. P. Mali, K. G. Moons & P. H. Peeters (2008). “Meta-analysis of MR imaging in the diagnosis of breast lesions”, Radiology 246: 116–124.

    Article  PubMed  Google Scholar 

  46. Kuhl, C. K., P. Mielcareck, S. Klaschik, et al. (1999). “Dynamic breast MR imaging: Are signal intensity time course data useful for differential diagnosis of enhancing lesions?” Radiology 211: 101–110.

    PubMed  CAS  Google Scholar 

  47. Katz-Brull, R., P. T. Lavin & R. E. Lenkinski (2002). “Clinical utility of proton magnetic resonance spectroscopy in characterizing breast lesions”, Journal of the National Cancer Institute 94: 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  48. Guo, Y., Y. Q. Cai, Z. L. Cai, et al. (2002). “Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging”, Journal of Magnetic Resonance Imaging 16: 172–178.

    Article  PubMed  Google Scholar 

  49. Hatakenaka, M., H. Soeda, H. Yabuuchi, et al. (2008). “Apparent diffusion coefficients of breast tumors: Clinical application”, Magnetic Resonance in Medical Sciences 7: 23–29.

    Article  PubMed  Google Scholar 

  50. Zhao, B., S. F. Cai, P. H. Gao & H. J. Peng (2005). “The research on distinguishing benign from malignant breast lesions by diffusion-weighted MR imaging”, Chinese Journal of Radiology 39: 497–499.

    Google Scholar 

  51. Xue, C. X., S. Wang, W., F. Yuan, Q. W. Song & D. X. Ning (2004). “Preliminary research on multi-slice helical CT perfusion and MR perfusion in soft tissue tumors”, Chinese Journal of Radiology 38: 800–803.

    Google Scholar 

  52. Zhang, M. & M. Kono (1997). “Solitary pulmonary nodules: Evaluation of blood flow patterns with dynamic CT”, Radiology 205: 471–478.

    PubMed  CAS  Google Scholar 

  53. Liang, Y., D. H. Luo, N. Wu, et al. (2004). “A perfusion study of malignant lymph nodes in the neck with multi-slice spiral CT”, Chinese Journal of Radiology 38: 1993–1997.

    Google Scholar 

  54. Fischbein, N. J., S. M. Noworolski, R. G. Henry, M. J. Kaplan, W. P. Dillon & S. J. Nelson (2003). “Assessment of metastatic cervical adenopathy using dynamic contrast-enhanced MR imaging”, American Journal of Neuroradiology 24: 301–311.

    PubMed  Google Scholar 

  55. Lee, K. C., W. K. Moon, J. W. Chung, et al. (2007). “Assessment of lymph node metastases by contrast-enhanced MR imaging in a head and neck cancer model”, Korean Journal of Radiology 8: 9–14.

    Article  PubMed  Google Scholar 

  56. Koc, O., Y. Paksoy, I. Erayman, A. S. Kivrak & H. Arbag (2007). “Role of diffusion weighted MR in the discrimination diagnosis of the cystic and/or necrotic head and neck lesions”, European Journal of Radiology 62: 205–213.

    Article  PubMed  Google Scholar 

  57. Abdel Razek, A. A., N. Y. Soliman, S. Elkhamary, M. K. Alsharaway & A. Tawfik (2006). “Role of diffusion-weighted MR imaging in cervical lymphadenopathy”, European Radiology 16: 1468–1477.

    Article  PubMed  Google Scholar 

  58. Holzapfel, K., S. Duetsch, C. Fauser, M. Eiber, E. J. Rummeny & J. Gaa (2008). “Value of diffusion-weighted MR imaging in the differentiation between benign and malignant cervical lymph nodes”, European Journal of Radiology 72(3): 381–387.

    Article  PubMed  Google Scholar 

  59. Vandecaveye, V., F. De Keyzer, V. Vander Poorten, et al. (2009). “Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging”, Radiology 251: 134–146.

    Article  PubMed  Google Scholar 

  60. Sumi, M., N. Sakihama, T. Sumi, et al. (2003). “Discrimination of metastatic cervical lymph nodes with diffusion-weighted MR imaging in patients with head and neck cancer”, American Journal of Neuroradiology 24: 1627–1634.

    PubMed  Google Scholar 

  61. Acland, K. M., C. Healy, E. Calonje, et al. (2001). “Comparison of positron emission tomography scanning and sentinel node biopsy in the detection of micrometastases of primary cutaneous malignant melanoma”, Journal of Clinical Oncology 19: 2674–2678.

    PubMed  CAS  Google Scholar 

  62. Maisey, M. N. (2004). “Overview of clinical PET”, British Journal of Radiology 75 Spec No: S1–5.

    Google Scholar 

  63. Golder, W. A. (2004). “Lymph node diagnosis in oncologic imaging: A dilemma still waiting to be solved”, Onkologie 27: 194–199.

    Article  PubMed  CAS  Google Scholar 

  64. Pieterman, R. M., J. W. van Putten, J. J. Meuzelaar, et al. (2000). “Preoperative staging of non-small-cell lung cancer with positron-emission tomography”, New England Journal of Medicine 343: 254–261.

    Article  PubMed  CAS  Google Scholar 

  65. Brennan, D. D., T. Gleeson, L. E. Coate, C. Cronin, D. Carney & S. J. Eustace (2005). “A comparison of whole-body MRI and CT for the staging of lymphoma”, American Journal of Roentgenology 185: 711–716.

    Article  PubMed  CAS  Google Scholar 

  66. Antoch, G., F. M. Vogt, L. S. Freudenberg, et al. (2003). “Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology”, Journal of the American Medical Association 290: 3199–3206.

    Article  PubMed  CAS  Google Scholar 

  67. Schmidt, G. P., H. Kramer, M. F. Reiser & C. Glaser (2007). “Whole-body magnetic resonance imaging and positron emission tomography-computed tomography in oncology”, Topics in Magnetic Resonance Imaging 18: 193–202.

    Article  PubMed  Google Scholar 

  68. Takahara, T., Y. Imai, T. Yamashita, S. Yasuda, S. Nasu & M. Van Cauteren (2004). “Diffusion weighted whole body imaging with background body signal suppression (DWIBS): Technical improvement using free breathing, STIR and high resolution 3D display”, Radiation Medicine 22: 275–282.

    PubMed  Google Scholar 

  69. Jeong, H. S., C. H. Baek, Y. I. Son, et al. (2007). “Use of integrated 18F-FDG PET/CT to improve the accuracy of initial cervical nodal evaluation in patients with head and neck squamous cell carcinoma”, Head Neck 29: 203–210.

    Article  PubMed  Google Scholar 

  70. Terada, A., Y. Hasegawa, M. Goto, et al. (2006). “Sentinel lymph node radiolocalization in clinically negative neck oral cancer”, Head Neck 28: 114–120.

    Article  PubMed  Google Scholar 

  71. Rohren, E. M., E. K. Paulson, R. Hagge, et al. (2002). “The role of F-18FDG positron emission tomography in preoperative assessment of the liver in patients being considered for curative resection of hepatic metastases from colorectal cancer”, Clinical Nuclear Medicine 27: 550–555.

    Article  PubMed  Google Scholar 

  72. Harisinghani, M. G., S. Saini, R. Weissleder, et al. (1999). “MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: Radiographic-pathologic correlation”, American Journal of Roentgenology 172: 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  73. Gualdi, G. F., E. Casciani, A. Guadalaxara, C. d’Orta, E. Polettini & G. Pappalardo (2000). “Local staging of rectal cancer with transrectal ultrasound and endorectal magnetic resonance imaging: comparison with histologic findings”, Diseases of the Colon and Rectum 43: 338–345.

    Article  PubMed  CAS  Google Scholar 

  74. Fuchsjager, M. H., A. G. Maier, W. Schima, et al. (2003). “Comparison of transrectal sonography and double-contrast MR imaging when staging rectal cancer”, American Journal of Roentgenology 181: 421–427.

    Article  PubMed  Google Scholar 

  75. Chung, H. W., J. B. Chung, S. W. Park, S. Y. Song, J. K. Kang, C. I. Park (2004). “Comparison of hydrocolonic sonograpy accuracy in preoperative staging between colon and rectal cancer”, World Journal of Gastroenterology 10: 1157–1161.

    PubMed  Google Scholar 

  76. Schaffzin, D. M. & W. D. Wong (2004). “Endorectal ultrasound in the preoperative evaluation of rectal cancer”, Clinical Colorectal Cancer 4: 124–132.

    Article  PubMed  Google Scholar 

  77. Xue, H. D., J. Lei, Z. Li, et al. (2009). “Lymph node image with ultrasmall superparamagnetic iron oxide and comparison with pathological result”, Acta Academiae Medicinae Sinicae 31: 139–145.

    PubMed  Google Scholar 

  78. Choi, S. H., W. K. Moon, J. H. Hong, et al. (2007). “Lymph node metastasis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging versus PET/CT in a rabbit model”, Radiology 242: 137–143.

    Article  PubMed  Google Scholar 

  79. Lahaye, M. J., G. L. Beets, S. M. Engelen, et al. (2009). “Locally advanced rectal cancer: MR imaging for restaging after neoadjuvant radiation therapy with concomitant chemotherapy. Part II. What are the criteria to predict involved lymph nodes?” Radiology 252: 81–91.

    Article  PubMed  Google Scholar 

  80. Thoeny, H. C., M. Triantafyllou, F. D. Birkhaeuser, et al. (2009). “Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients”, European Urology 55(4): 761–769.

    Article  PubMed  Google Scholar 

  81. Tokuhara, T., N. Tanigawa, M. Matsuki, et al. (2008). “Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): Diagnostic performance in post-contrast images using new diagnostic criteria”, Gastric Cancer 11: 194–200.

    Article  PubMed  Google Scholar 

  82. Harada, T., N. Tanigawa, M. Matsuki, T. Nohara & I. Narabayashi (2007). “Evaluation of lymph node metastases of breast cancer using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging”, European Journal of Radiology 63: 401–407.

    Article  PubMed  Google Scholar 

  83. Baghi, M., M. G. Mack, J. Wagenblast, et al. (2007). “Iron oxide particle-enhanced magnetic resonance imaging for detection of benign lymph nodes in the head and neck: How reliable are the results?” Anticancer Research 27: 3571–3575.

    PubMed  Google Scholar 

  84. Stadnik, T. W., H. Everaert, S. Makkat, R. Sacre, J. Lamote & C. Bourgain (2006). “Breast imaging. Preoperative breast cancer staging: Comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging—initial findings”, European Radiology 16: 2153–2160.

    Article  PubMed  Google Scholar 

  85. Ott, K., U. Fink, K. Becker, et al. (2003). “Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: Results of a prospective trial”, Journal of Clinical Oncology 21: 4604–4610.

    Article  PubMed  CAS  Google Scholar 

  86. Stahl, A., K. Ott, M. Schwaiger & W. A. Weber (2004). “Comparison of different SUV-based methods for monitoring cytotoxic therapy with FDG PET”, European Journal of Nuclear Medicine and Molecular Imaging 31: 1471–1478.

    Article  PubMed  CAS  Google Scholar 

  87. Weber, W. A. & K. Ott (2004). “Imaging of esophageal and gastric cancer”, Seminars in Oncology 31: 530–541.

    Article  PubMed  Google Scholar 

  88. Lordick, F., K. Ott, B. J. Krause, et al. (2007). “PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: The MUNICON phase II trial”, Lancet Oncology 8: 797–805.

    Article  PubMed  Google Scholar 

  89. Ott, K., K. Herrmann, B. J. Krause & F. Lordick (2008). “The value of PET imaging in patients with localized gastroesophageal cancer”, Gastrointestinal Cancer Research 2: 287–294.

    PubMed  Google Scholar 

  90. Ott, K., K. Herrmann, F. Lordick, et al. (2008). “Early metabolic response evaluation by fluorine-18 fluorodeoxyglucose positron emission tomography allows in vivo testing of chemosensitivity in gastric cancer: Long-term results of a prospective study”, Clinical Cancer Research 14: 2012–2018.

    Article  PubMed  CAS  Google Scholar 

  91. Ott, K., F. Lordick, K. Herrmann, B. J. Krause, C. Schuhmacher & J. R. Siewert (2008). “The new credo: Induction chemotherapy in locally advanced gastric cancer: consequences for surgical strategies”, Gastric Cancer 11: 1–9.

    Article  PubMed  Google Scholar 

  92. Ott, K., W. A. Weber, F. Lordick, et al. (2006). “Metabolic imaging predicts response, survival, and recurrence in adenocarcinomas of the esophagogastric junction”, Journal of Clinical Oncology 24: 4692–4698.

    Article  PubMed  Google Scholar 

  93. Nakamoto, Y., K. Togashi, T. Kaneta, et al. (2009). “Clinical value of whole-body FDG-PET for recurrent gastric cancer: A multicenter study”, Japanese Journal of Clinical Oncology 39: 297–302.

    Article  PubMed  Google Scholar 

  94. Brepoels, L., S. Stroobants & G. Verhoef (2007). “PET and PET/CT for response evaluation in lymphoma: Current practice and developments”, Leukemia and lymphoma 48: 270–282.

    Article  PubMed  CAS  Google Scholar 

  95. Ulaner, G. A., P. M. Colletti & P. S. Conti (2008). “B-cell non-Hodgkin lymphoma: PET/CT evaluation after 90Y-ibritumomab tiuxetan radioimmunotherapy— initial experience”, Radiology 246: 895–902.

    Article  PubMed  Google Scholar 

  96. Zinzani, P. L., V. Stefoni, M. Tani, et al. (2009). “Role of [18F]fluorodeoxy-glucose positron emission tomography scan in the follow-up of lymphoma”, Journal of Clinical Oncology 27: 1781–1787.

    Article  PubMed  Google Scholar 

  97. Tateishi, U., T, Terauchi, T. Inoue & K. Tobinai (2009). “Nodal status of malignant lymphoma in pelvic and retroperitoneal lymphatic pathways: PET/CT”, Abdominal Imaging 35(2): 232–240.

    Article  PubMed  Google Scholar 

  98. Seto, M., K. Kuriyama, T. Kasugai, et al. (1999). “Comparison of computed tomography and pathologic examination for evaluation of response of primary lung cancer to neoadjuvant therapy”, Journal of Thoracic Imaging 14: 69–73.

    Article  PubMed  CAS  Google Scholar 

  99. Lee, K. S., Y. M. Shim, J. Han, et al. (2000). “Primary tumors and mediastinal lymph nodes after neoadjuvant concurrent chemoradiotherapy of lung cancer: Serial CT findings with pathologic correlation”, Journal of Computer Assisted Tomography 24: 35–40.

    Article  PubMed  CAS  Google Scholar 

  100. Ohno, Y., M. Nogami, T. Higashino, et al. (2005). “Prognostic value of dynamic MR imaging for non-small-cell lung cancer patients after chemoradiotherapy”, Journal of Magnetic Resonance Imaging 21: 775–783.

    Article  PubMed  Google Scholar 

  101. Wang, Y., D. M. Ikeda, B. Narasimhan, et al. (2008). “Estrogen receptor-negative invasive breast cancer: Imaging features of tumors with and without human epidermal growth factor receptor type 2 overexpression”, Radiology 246: 367–375.

    Article  PubMed  Google Scholar 

  102. Londero, V., M. Bazzocchi, C. Del Frate, et al. (2004). “Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy”, European Radiology 14: 1371–1379.

    Article  PubMed  Google Scholar 

  103. Pickles, M. D., M. Lowry, D. J. Manton, P. Gibbs & L. W. Turnbull (2005). “Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy”, Breast Cancer Research and Treatment 91: 1–10.

    Article  PubMed  CAS  Google Scholar 

  104. Patterson, D. M., A. R. Padhani & D. J. Collins (2008). “Technology insight: Water diffusion MRI—a potential new biomarker of response to cancer therapy”, Nature Clinical Practice Oncology 5: 220–233.

    Article  PubMed  Google Scholar 

  105. Kamel, I. R., D. A. Bluemke, D. Ramsey, et al. (2003). “Role of diffusion-weighted imaging in estimating tumor necrosis after chemoembolization of hepatocellular carcinoma”, American Journal of Roentgenology 181: 708–710.

    Article  PubMed  Google Scholar 

  106. Theilmann, R. J., R. Borders, T. P. Trouard, et al. (2004). “Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy”, Neoplasia 6: 831–837.

    Article  PubMed  Google Scholar 

  107. Cui, Y., X. P. Zhang, Y. S. Sun, L. Tang & L. Shen (2008). “Apparent diffusion coefficient: Potential imaging biomarker for prediction and early detection of response to chemotherapy in hepatic metastases”, Radiology 248: 894–900.

    Article  PubMed  Google Scholar 

  108. Abdel Razek, A. A., A. Y. Kandeel, N. Soliman, et al. (2007). “Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes”, American Journal of Neuroradiology 28: 1146–1152.

    Article  PubMed  CAS  Google Scholar 

  109. Vandecaveye, V., F. de Keyzer, V. Vander Poorten, et al. (2006). “Evaluation of the larynx for tumour recurrence by diffusion-weighted MRI after radiotherapy: Initial experience in four cases”, British Journal of Radiology 79: 681–687.

    Article  PubMed  CAS  Google Scholar 

  110. Chen, Y. K., C. H. Kao, A. C. Liao, Y. Y. Shen & C. T. Su (2003). “Colorectal cancer screening in asymptomatic adults: the role of FDG PET scan”, Anticancer Research 23: 4357–4361.

    PubMed  Google Scholar 

  111. Kostakoglu, L. & S. J. Goldsmith (2003). “ 18F-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma”, Journal of Nuclear Medicine 44: 224–239.

    PubMed  Google Scholar 

  112. Langenhoff, B. S., W. J. Oyen, G. J. Jager, et al. (2002). “Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: A prospective study”, Journal of Clinical Oncology 20: 4453–4458.

    Article  PubMed  CAS  Google Scholar 

  113. Kalff, V., R. J. Hicks, R. E. Ware, A. Hogg, D. Binns & A. F. McKenzie (2002). “The clinical impact of (18)F-FDG PET in patients with suspected or confirmed recurrence of colorectal cancer: A prospective study”, Journal of Nuclear Medicine 43: 492–499.

    PubMed  Google Scholar 

  114. Gambhir, S. S., J. Czernin, J. Schwimmer, D. H. Silverman, R. E. Coleman & M. E. Phelps (2001). “A tabulated summary of the FDG PET literature”, Journal of Nuclear Medicine 42: 1S–93S.

    PubMed  CAS  Google Scholar 

  115. Abdel-Nabi, H., R. J. Doerr, D. M. Lamonica, et al. (1998). “Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings”, Radiology 206: 755–760.

    PubMed  CAS  Google Scholar 

  116. Cohade, C., M. Osman, J. Leal & R. L. Wahl (2003). “Direct comparison of (18)F-FDG PET and PET/CT in patients with colorectal carcinoma”, Journal of Nuclear Medicine 44: 1797–1803.

    PubMed  Google Scholar 

  117. Schussler-Fiorenza, C. M., D. M. Mahvi, J. Niederhuber, L. F. Rikkers & S. M. Weber (2004). “Clinical risk score correlates with yield of PET scan in patients with colorectal hepatic metastases”, Journal of Gastrointestinal Surgery 8: 150–157; discussion 157–158.

    Article  PubMed  Google Scholar 

  118. Kostakoglu, L., H. Agress, Jr. & S. J. Goldsmith (2003). “Clinical role of FDG PET in evaluation of cancer patients”, Radiographics 23: 315–340; quiz 533.

    Article  PubMed  Google Scholar 

  119. Mukai, M., S. Sadahiro, S. Yasuda, et al. (2000). “Preoperative evaluation by whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with primary colorectal cancer”, Oncology Reports 7: 85–87.

    PubMed  CAS  Google Scholar 

  120. Greco, C., K. Rosenzweig, G. L. Cascini & O. Tamburrini (2007). “Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC)”, Lung Cancer 57: 125–134.

    Article  PubMed  Google Scholar 

  121. Quan, X. Y., X. J. Sun, Z. J. Yu & M. Tang (2005). “Evaluation of diffusion weighted imaging of magnetic resonance imaging in small focal hepatic lesions: A quantitative study in 56 cases”, Hepatobiliary and Pancreatic Diseases International 4: 406–409.

    PubMed  Google Scholar 

  122. Sato, C., S. Naganawa, T. Nakamura, et al. (2005). “Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate”, Journal of Magnetic Resonance Imaging 21: 258–262.

    Article  PubMed  Google Scholar 

  123. Qi, L. P., X. P. Zhang, L. Tang, J. Li, Y. S. Sun & G. Y. Zhu (2009). “Using diffusion-weighted MR imaging for tumor detection in the collapsed lung: a preliminary study”, European Radiology 19: 333–341.

    Article  PubMed  Google Scholar 

  124. Kohm, W. J., K. S. Bergman, J. S. Rasey, et al. (1995). “Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using ai][F-18]fluoromisonidazole positron emission tomography”, International Journal of Radiation Oncology. Biology. Physics 33: 391–398.

    Google Scholar 

  125. Keles, G. E. & M. S. Berger (2004). “Advances in neurosurgical technique in the current management of brain tumors”, Seminars in Oncology 31: 659–665.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X., Cao, K., Qi, L. (2013). Molecular Imaging Techniques in Clinical Practice of Tumors. In: Molecular Imaging. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34303-2_17

Download citation

Publish with us

Policies and ethics