Advertisement

Crisis Management Model and Recommended System for Construction and Real Estate

  • Artūras Kaklauskas
  • Edmundas Kazimieras Zavadskas
  • Paulius Kazokaitis
  • Juozas Bivainis
  • Birute Galiniene
  • Maurizio d’Amato
  • Jurga Naimaviciene
  • Vita Urbanaviciene
  • Arturas Vitas
  • Justas Cerkauskas
Part of the Studies in Computational Intelligence book series (SCI, volume 457)

Abstract

Integrated analysis and rational decision-making at the micro-, meso- and macro-levels are needed to mitigate the effects of recession on the construction and real estate sector. Crisis management involves numerous aspects that should be considered in addition to making economic, political and legal/regulatory decisions. These must include social, culture, ethical, psychological, educational, environ- mental, provisional, technological, technical, organizational and managerial aspects. This article presents a model and system for such considerations and discusses certain composite parts of it.

Keywords

construction real estate crisis management quantitative and qualitative methods global development trends alternatives Lithuania Model System forecasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haslem, J.A., Scheraga, C.A., Bedingfield, J.P.: An analysis of the foreign and domestic balance sheet strategies of the U.S. banks and their association to profitability performance. Management International Review (1992)Google Scholar
  2. 2.
    Canbas, S., Cabuk, A., Kilic, S.B.: Prediction of commercial bank failure via multivariate statistical analysis of financial structures: the Turkish case. European Journal of Operational Research 166, 528–546 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Alam, P., Booth, D., Lee, K., Thordarson, T.: The use of fuzzy clustering algorithm and self-organizing neural networks for identifying potentially failing banks: an experimental study. Expert Systems with Applications 18(3), 185–199 (2000)CrossRefGoogle Scholar
  4. 4.
    Tam, K.Y.: Neural network models and the prediction of bank bankruptcy. Omega: The International Journal of Management Science 19(5), 429–445 (1991)CrossRefGoogle Scholar
  5. 5.
    Pasiouras, F., Gaganis, C., Zopounidis, C.: Multicriteria classification models for the identification of targets and acquirers in the Asian banking sector. European Journal of Operational Research 204(2), 328–335 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Niemira, M.P., Saaty, T.L.: An Analytic Network Process model for financial-crisis forecasting. International Journal of Forecasting 20(4), 573–587 (2004)CrossRefGoogle Scholar
  7. 7.
    García, F., Guijarro, F., Moya, I.: Ranking Spanish savings banks: A multicriteria approach. Mathematical and Computer Modelling 52(7-8), 1058–1065 (2010)CrossRefGoogle Scholar
  8. 8.
    Boyacioglu, M.A., Kara, Y., Baykan, O.K.: Predicting bank financial failures using neural networks, support vector machines and multivariate statistical methods: a comparative analysis in the sample of savings deposit insurance fund (SDIF) transferred banks in Turkey. Expert Systems with Applications 36(2), 3355–3366 (2009)CrossRefGoogle Scholar
  9. 9.
    Frydman, H., Altman, E.I., Kao, D.: Introducing recursive partitioning for financial classification: the case of financial distress. Journal of Finance 40(1), 269–291 (1985)CrossRefGoogle Scholar
  10. 10.
    Chen, X., Wang, X., Wu, D.D.: Credit risk measurement and early warning of SMEs: An empirical study of listed SMEs in China. Decision Support Systems 49(3), 301–310 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gao, S., Xu, D.: Conceptual modeling and development of an intelligent agent-assisted decision support system for anti-money laundering. Expert Systems with Applications 36(2/1), 1493–1504 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lin, S.L.: A new two-stage hybrid approach of credit risk in banking industry. Expert Systems with Applications 36(4), 8333–8341 (2009)CrossRefGoogle Scholar
  13. 13.
    Siriopoulos, C., Tziogkidis, P.: How do Greek banking institutions react after significant events?—A DEA approach. Omega: The International Journal of Management Science 38(5), 294–308 (2010)CrossRefGoogle Scholar
  14. 14.
    Kaklauskas, A.: Multiple criteria decision support system for building life cycle. Habilitation Work. Technika, Vilnius (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Artūras Kaklauskas
    • 1
  • Edmundas Kazimieras Zavadskas
    • 1
  • Paulius Kazokaitis
    • 1
  • Juozas Bivainis
    • 1
  • Birute Galiniene
    • 2
  • Maurizio d’Amato
    • 3
  • Jurga Naimaviciene
    • 1
  • Vita Urbanaviciene
    • 1
  • Arturas Vitas
    • 2
  • Justas Cerkauskas
    • 1
  1. 1.Vilnius Gediminas Technical UniversityVilniusLithuania
  2. 2.Vilnius UniversityVilniusLithuania
  3. 3.Technical University of BariBariItaly

Personalised recommendations