Skip to main content

Shock Wave Emission by Laser Generated Bubbles

  • Chapter

Part of the Shock Wave Science and Technology Reference Library book series (SHOCKWAVES,volume 8)

Abstract

The phenomena occurring when short pulses of laser light are focused into a liquid are reviewed from the first findings after the invention of the laser to the present state of knowledge. Dielectric breakdown with plasma and bubble formation, the breakdown shock wave, bubble dynamics with expansion and collapse, and the bubble collapse shock wave or waves are addressed. Breakdown plasma lengths as a function of laser pulse energy are given. The propagation speed of the breakdown shock wave and the related shock peak pressure as determined by high speed streak recordings for nano-, pico-, and femtosecond laser pulses focused into water are discussed. Breakdown shock wave velocities up to 5000 m/s and peak pressures up to 100 kbar are reported for these monopolar acoustic pulses for laser pulse energies up to some 10 mJ. In tissue bipolar pressure pulses are observed due to the elasticity of the medium. The widths of the shock waves reach values in the range of tens of nano seconds to beyond 100 ns. The simultaneously generated breakdown bubble gets about half of the energy of the shock wave. Bubble energy rises linearly with the laser pulse energy with different slopes depending on the laser pulse duration. Equations for bubble dynamics are given and compared with laser induced bubble dynamics. Strength and width of bubble collapse shock waves measured with PVDF and fiber optic hydrophones are presented together with the breakdown shock waves. Similar values are obtained for both collapse and breakdown in the bulk of the liquid. Shock wave emission from bubbles collapsing near boundaries (solid and elastic) is discussed together with applications in cleaning and erosion or cell destruction.

Keywords

  • Shock Wave
  • Cavitation Bubble
  • Laser Pulse Energy
  • Laser Induce Breakdown
  • Bubble Dynamic

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34297-4_3
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-34297-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Askar’yan, G.A., Prokhorov, A.M., Chanturiya, I.F., Shipulo, G.P.: The effects of a laser beam in a liquid. Sov. Phys. – JETP 17, 1463–1465 (1963)

    Google Scholar 

  2. Brewer, R.G., Rieckhoff, K.E.: Stimulated Brillouin scattering in liquids. Phys. Rev. Lett. 13, 334–336 (1964)

    Google Scholar 

  3. Carome, E.F., Moeller, C.E., Clark, N.A.: Intense ruby-laser-induced acoustic impulses in liquids. J. Acoust. Soc. Am. 40, 1462–1466 (1966)

    Google Scholar 

  4. Bell, C.E., Landt, J.A.: Laser-induced high-pressure shock waves in water. Appl. Phys. Lett. 10, 46–48 (1967)

    Google Scholar 

  5. Carome, E.F., Carreira, E.M., Prochaska, C.J.: Photographic studies of laser-induced pressure impulses in liquids. Appl. Phys. Lett. 11, 64–66 (1967)

    Google Scholar 

  6. Barnes, P.A., Rieckhoff, K.E.: Laser induced underwater sparks. Appl. Phys. Lett. 13, 282–284 (1968)

    Google Scholar 

  7. Felix, M.P., Ellis, A.T.: Laser-induced liquid breakdown – a step-by-step account. Appl. Phys. Lett. 19, 484–486 (1971)

    Google Scholar 

  8. Buzukov, A.A., Teslenko, V.S.: Sonoluminescence following of focusing laser radiation into a liquid. J. Exp. Theor. Phys. Lett. 14, 189–191 (1971)

    Google Scholar 

  9. Lauterborn, W.: High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Lett. 21, 27–29 (1972)

    Google Scholar 

  10. Akmanov, A.G., Ben’kovskii, V.G., Golubnichii, P.I., Maslennikov, S.I., Shemanin, V.G.: Laser sonoluminescence in a liquid. Sov. Phys. Acoust. 19, 417–418 (1974)

    Google Scholar 

  11. Lauterborn, W.: Kavitation durch Laserlicht (Cavitation by laser light). Acustica 31, 51–78 (1974) (in German)

    Google Scholar 

  12. Lauterborn, W., Bolle, H.: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72, 391–399 (1975)

    Google Scholar 

  13. Lauterborn, W., Ebeling, K.J.: High-speed holography of laser-induced breakdown in liquids. Appl. Phys. Lett. 31, 663–664 (1977)

    Google Scholar 

  14. Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1971)

    Google Scholar 

  15. Teslenko, V.S.: Investigation of photoacoustic and photohydrodynamic parameters of laser induced breakdown in liquids. Kvantovaya Electronica 4, 1732–1737 (1977) (in Russian); Tranlation in: Sov. J. Quantum Electr. 7, 981–984 (1977)

    Google Scholar 

  16. Ebeling, K.J.: Zum Verhalten kugelförmiger, lasererzeugter Kavitationsblasen in Wasser (The behavior of spherical laser-produced bubbles in water). Acustica 40, 229–239 (1978) (in German)

    Google Scholar 

  17. Lauterborn, W. (ed.): Cavitation and Inhomogeneities in Underwater Acoustics. Springer, Heidelberg (1980)

    Google Scholar 

  18. Lauterborn, W.: Cavitation and coherent optics. In: [17], pp. 3–12 (1980)

    Google Scholar 

  19. V. S. Teslenko: Experimental investigation of bubble collapse at laser-induced breakdown in liquids. In: [17], pp. 30–34 (1980)

    Google Scholar 

  20. Ebeling, K.J.: Application of high speed holocinematographical methods in cavitation research. In: [17], pp. 35–41 (1980)

    Google Scholar 

  21. Lauterborn, W., Timm, R.: Bubble collapse studies at a million frames per second. In: [17], pp. 42–46 (1980)

    Google Scholar 

  22. Hentschel, W., Lauterborn, W.: Holographic generation of multi-bubble systems. In: [17], pp. 47–53 (1980)

    Google Scholar 

  23. Hentschel, W., Lauterborn, W.: Acoustic emission of single laser-produced cavitation bubbles and their dynamics. Appl. Scient. Res. 38, 225–230 (1982)

    Google Scholar 

  24. Lauterborn, W., Hentschel, W.: Cavitation bubble dynamics studied by high speed photography and holography: part one. Ultrasonics 23, 260–268 (1985)

    Google Scholar 

  25. Lauterborn, W., Hentschel, W.: Cavitation bubble dynamics studied by high speed photography and holography: part two. Ultrasonics 24, 59–65 (1986)

    Google Scholar 

  26. Shima, A., Takayama, K., Tomita, Y., Miura, N.: An experimental study on effects of a solid wall on the motion of bubbles and shock waves in bubble collapse. Acustica 48, 293–301 (1981)

    Google Scholar 

  27. Tomita, Y., Shima, A.: Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid Mech. 169, 535–564 (1986)

    Google Scholar 

  28. Shima, A., Tomita, Y., Gibson, D.C., Blake, J.R.: The growth and collapse of cavitation bubbles near composite surfaces. J. Fluid Mech. 203, 199–214 (1989)

    Google Scholar 

  29. Fujimoto, J.G., Lin, W.Z., Ippen, E.P., Puliafito, C.A., Steinert, R.F.: Time-resolved studies of Nd:YAG laser-induced breakdown - Plasma formation, acoustic wave generation, and cavitation. Invest. Ophthalmol. Vis. Sci. 26, 1771–1777 (1985)

    Google Scholar 

  30. Vogel, A., Hentschel, W., Holzfuss, J., Lauterborn, W.: Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium:YAG lasers. Ophthalmology 93, 1259–1269 (1986)

    Google Scholar 

  31. Vogel, A., Lauterborn, W.: Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am. 84, 719–731 (1988)

    Google Scholar 

  32. Vogel, A., Lauterborn, W., Timm, R.: Optical and acoustical investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 206, 299–338 (1989)

    Google Scholar 

  33. Zysset, B., Fujimoto, J.G., Deutsch, T.F.: Time resolved measurements of picosecond optical breakdown. Appl. Phys. B 48, 139–147 (1989)

    Google Scholar 

  34. Teng, P., Nishioka, N.S., Anderson, R.R., Deutsch, T.F.: Optical studies of pulsed-laser fragmentation of biliary calculi. Appl. Phys. B 42, 73–78 (1987)

    Google Scholar 

  35. Hickling, R., Plesset, M.S.: Collapse and rebound of a spherical bubble in water. Phys. Fluids 7, 7–14 (1964)

    MATH  Google Scholar 

  36. Fujikawa, S., Akamatsu, T.: Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. J. Fluid Mech. 97, 481–512 (1980)

    MATH  Google Scholar 

  37. Kennedy, P.K., Hammer, D.X., Rockwell, B.A.: Laser-induced breakdown in aqueous media. Prog. Quantum Electr. 21, 155–248 (1997)

    Google Scholar 

  38. Noack, J., Vogel, A.: Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients, and energy density. IEEE J. Quantum Electr. 35, 1156–1167 (1999)

    Google Scholar 

  39. Vogel, A., Noack, J., Hüttmann, G., Paltauf, G.: Mechanism of femtosecond laser nanosurgery of cells and tissues. Appl. Phys. B 81, 1015–1047 (2005)

    Google Scholar 

  40. Williams, F., Varma, S.P., Hillenius, S.: Liquid water as a lone-pair amorphous semiconductor. J. Chem. Phys. 64, 1549–1554 (1976)

    Google Scholar 

  41. Sacchi, C.A.: Laser-induced electric breakdown in water. J. Opt. Soc. Am. B 8, 337–344 (1991)

    MathSciNet  Google Scholar 

  42. Vogel, A., Busch, S., Jungnickel, K., Birngruber, R.: Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg. Med. 15, 32–43 (1994)

    Google Scholar 

  43. Vogel, A., Nahen, K., Theisen, D., Noack, J.: Plasma formation in water by picosecond and nanosecond Nd:YAG laser pulses – Part I: Optical breakdown at threshold and superthreshold irradiance. IEEE J. Sel. Top. Quantum Electr. 2, 847–860 (1996)

    Google Scholar 

  44. Toker, G., Bulatov, V., Kovalchuk, T., Schechter, I.: Micro-dynamics of optical breakdown in water induced by nanosecond laser pulses of 1064 nm wavelength. Chem. Phys. Lett. 471, 244–248 (2009)

    Google Scholar 

  45. Vogel, A., Busch, S., Parlitz, U.: Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148–165 (1996)

    Google Scholar 

  46. Noack, J., Vogel, A.: Single-shot spatially resolved characterization of laser-induced shock waves in water. Appl. Opt. 37, 4092–4099 (1998)

    Google Scholar 

  47. Kudryashov, S.I., Zvorykin, V.D.: Microscale nanosecond laser-induced optical breakdown in water. Phys. Rev. E 78, 036404 (2008)

    Google Scholar 

  48. Byun, K.T., Kwak, H.Y.: A model of laser-induced cavitation. Jpn. J. Appl. Phys. 43, 621–630 (2004)

    Google Scholar 

  49. Noack, J., Hammer, D.X., Noojin, G.D., Rockwell, B.A., Vogel, A.: Influence of pulse duration on mechanical effects after laser-induced breakdown in water. J. Appl. Phys. 83, 7488–7495 (1998)

    Google Scholar 

  50. Hentschel, W., Lauterborn, W.: High-speed holographic movie camera. Opt. Engineering 24, 687–691 (1985)

    Google Scholar 

  51. Quinto-Su, P.A., Venugopalan, V., Ohl, C.D.: Generation of laser-induced cavitation bubbles with a digital hologram. Opt. Express 16, 18964–18969 (2008)

    Google Scholar 

  52. Lim, K.Y., Quinto-Su, P.A., Klaseboer, E., Khoo, B.C., Venugopalan, V., Ohl, C.D.: Nonspherical laser-induced cavitation bubbles. Phys. Rev. E 81, 016308-1–016308-9 (2010)

    Google Scholar 

  53. Jayasinghe, A.K., Rohner, J., Hutson, M.S.: Holographic UV laser microsurgery. Biomed. Opt. Express 2, 2590–2598 (2011)

    Google Scholar 

  54. Docchio, F., Regondi, P., Capon, M.R.C., Mellerio, J.: Study of the temporal and spatial dymanics of plasmas induced in liquids by nanosecond Nd:YAG laser pulses. 1: Analysis of the plasma starting times. Appl. Opt. 27, 3661–3668 (1988)

    Google Scholar 

  55. Juhasz, T., Kastis, G.A., Suárez, C., Bor, Z., Bron, W.E.: Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Lasers Surg. Med. 19, 23–31 (1996)

    Google Scholar 

  56. Schaffer, C.B., Nishimura, N., Glezer, E.N., Kim, A.M.-T., Mazur, E.: Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds. Opt. Express 10, 196–203 (2002)

    Google Scholar 

  57. Vogel, A., Noack, J., Nahen, K., Theisen, D., Busch, S., Parlitz, U., Hammer, D.X., Noojin, G.D., Rockwell, B.A., Birngruber, R.: Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B 68, 271–280 (1999)

    Google Scholar 

  58. Staudenraus, J., Eisenmenger, W.: Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics 31, 267–273 (1993)

    Google Scholar 

  59. Venugopalan, V., Guerra III, A., Nahen, K., Vogel, A.: Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation. Phys. Rev. Lett. 88, 078103 (2002)

    Google Scholar 

  60. Rice, M.H., Walsh, J.M.: Equation of state of water to 250 kilobars. J. Chem. Phys. 26, 824–830 (1957)

    Google Scholar 

  61. Brujan, E.A., Vogel, A.: Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J. Fluid Mech. 558, 281–308 (2006)

    MATH  Google Scholar 

  62. Ohl, C.D., Lindau, O., Lauterborn, W.: Luminescence from spherically and aspherically collapsing laser induced bubbles. Phys. Rev. Lett. 80, 393–396 (1998)

    Google Scholar 

  63. Kröninger, D., Köhler, K., Kurz, T., Lauterborn, W.: Particle tracking velocimetry of the flow field around a collapsing cavitation bubble. Exp. Fluids 48, 395–408 (2010)

    Google Scholar 

  64. Strube, H.W.: Numerische Untersuchungen zur Stabilität nichtsphärisch schwingender Blasen (Numerical investigations on the stability of nonspherically oscillating bubbles). Acustica 25, 289–303 (1971)

    Google Scholar 

  65. Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. Ser. 6 34, 94–98 (1917)

    MATH  Google Scholar 

  66. Lauterborn, W.: Eigenfrequenzen von Gasblasen in Flüssigkeiten (Natural frequencies of gas bubbles in liquids). Acustica 20, 14–20 (1968)

    Google Scholar 

  67. Vogel, A., Linz, N., Freidank, A., Paltauf, G.: Femtosecond-laser-induced nanocavitation in water: Implications for optical breakdown thresholds and cell surgery. Phys. Rev. Lett. 100, 038102 (2008)

    Google Scholar 

  68. Baghdassarian, O., Tabbert, B., Williams, G.A.: Luminescence characteristics of laser-induced bubbles in water. Phys. Rev. Lett. 83, 2437–2440 (1999)

    Google Scholar 

  69. Gilmore, F.R.: The growth or collapse of a spherical bubble in a viscous compressible liquid. Report No. 26-4, Hydrodynamics Laboratory, California Institute of Technology, Pasadena, California, USA (1952)

    Google Scholar 

  70. Löfstedt, R., Barber, B.P., Putterman, S.J.: Toward a hydrodynamic theory of sonoluminescence. Phys. Fluids A 5, 2911–2928 (1993)

    MATH  Google Scholar 

  71. Brennen, C.E.: Cavitation and Bubble Dynamics. Oxford University Press, New York (1995)

    Google Scholar 

  72. Lauterborn, W., Kurz, T., Mettin, R., Ohl, C.D.: Experimental and theoretical bubble dynamics. Adv. Chem. Phys. 110, 295–380 (1999)

    Google Scholar 

  73. Lauterborn, W., Kurz, T.: Physics of bubble oscillations. Rep. Prog. Phys. 73, 106501-1–106501-88 (2010)

    Google Scholar 

  74. Keller, J.B., Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628–633 (1980)

    MATH  Google Scholar 

  75. Lauterborn, W., Parlitz, U.: Methods of chaos physics and their applications to acoustics. J. Acoust. Soc. Am. 84, 1975–1993 (1988)

    MathSciNet  Google Scholar 

  76. Parlitz, U., Englisch, V., Scheffczyk, C., Lauterborn, W.: Bifurcation structure of bubble oscillators. J. Acoust. Soc. Am. 88, 1061–1077 (1990)

    MathSciNet  Google Scholar 

  77. Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457–478 (1986)

    MATH  Google Scholar 

  78. Lezzi, A., Prosperetti, A.: Bubble dynamics in a compressible liquid. Part 2. Second-order theory. J. Fluid Mech. 185, 289–321 (1987)

    Google Scholar 

  79. Lindau, O., Lauterborn, W.: Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. J. Fluid Mech. 479, 327–348 (2003)

    MATH  Google Scholar 

  80. Lindau, O.: Untersuchungen zur lasererzeugten Kavitation (Investigation of laser induced cavitation). Der Andere Verlag, Osnabrück (2001)

    Google Scholar 

  81. Fuster, D., Dopazo, C., Hauke, G.: Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am. 129, 122–131 (2011)

    Google Scholar 

  82. Lauterborn, W., Kurz, T., Geisler, R., Schanz, D., Lindau, O.: Acoustic cavitation, bubble dynamics and sonoluminescence. Ultrason. Sonochem. 14, 484–491 (2007)

    Google Scholar 

  83. Harris, P., Presles, H.N.: Reflectivity of a 5.8 kbar schock front in water. J. Chem. Phys. 74, 6864–6866 (1981)

    Google Scholar 

  84. Akhatov, I., Lindau, O., Topolnikov, A., Mettin, R., Vakhitova, A., Lauterborn, W.: Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids 13, 2805–2819 (2001)

    Google Scholar 

  85. Brujan, E.A., Nahen, K., Schmidt, P., Vogel, A.: Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251–281 (2001)

    MATH  Google Scholar 

  86. Brujan, E.A., Nahen, K., Schmidt, P., Vogel, A.: Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283–314 (2001)

    MATH  Google Scholar 

  87. Tomita, Y., Shima, A.: High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica 71, 161–171 (1990)

    Google Scholar 

  88. Philipp, A., Lauterborn, W.: Damage of solid surfaces by single laser-produced cavitation bubbles. Acustica · Acta Acustica 83, 223–227 (1997)

    Google Scholar 

  89. Isselin, J.-C., Alloncle, A.-P., Autric, M.: On laser induced single bubble near a solid boundary: Contribution to the understanding of erosion phenomena. J. Appl. Phys. 84, 5766–5771 (1998)

    Google Scholar 

  90. Philipp, A., Lauterborn, W.: Cavitation erosion by single laser-produced bubbles. J. Fluid Mech. 361, 75–116 (1998)

    MATH  Google Scholar 

  91. Shaw, S.J., Schiffers, W.P., Gentry, T.P., Emmony, D.C.: A study of the interaction of a laser-generated cavity with a nearby solid boundary. J. Phys. D: Appl. Phys. 32, 1612–1617 (1999)

    Google Scholar 

  92. Wolfrum, B., Kurz, T., Mettin, R., Lauterborn, W.: Shock wave induced interaction of microbubbles and boundaries. Phys. Fluids 15, 2916–2922 (2003)

    Google Scholar 

  93. Geisler, R., Schmidt-Ott, W.D., Kurz, T., Lauterborn, W.: Search for neutron emission in laser-induced cavitation. Europhys. Lett. 66, 435–440 (2004)

    Google Scholar 

  94. Grinenko, A., Gurovich, V.T., Krasik, Y.E.: Implosion in water medium and its possible application for the inertial confinement fusion target ignition. Phys. Plasmas 14, 12701-1–12701-7 (2007)

    Google Scholar 

  95. Song, W.D., Hong, M.H., Lukyanchuk, B., Chong, T.C.: Laser-induced cavitation bubbles for cleaning of solid surfaces. J. Appl. Phys. 95, 2952–2956 (2004)

    Google Scholar 

  96. Ohl, C.D., Arora, M., Dijkink, R., Janve, V., Lohse, D.: Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89, 074102-1–074102-3 (2006)

    Google Scholar 

  97. Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissue. Chem. Rev. 103, 577–644 (2003)

    Google Scholar 

  98. Apitz, I., Vogel, A.: Material ejection in nanosecond Er:YAG laser ablation of water, liver, and skin. Appl. Phys. A 81, 329–338 (2005)

    Google Scholar 

  99. Rink, K., Delacrétaz, G., Salathé, R.P.: Fragmentation process induced by microsecond laser pulses during lithotripsy. Appl. Phys. Lett. 61, 258–260 (1992)

    Google Scholar 

  100. Rink, K., Delacrétaz, G., Salathé, R.P.: Fragmentation process of current laser lithotripters. Lasers Surg. Med. 16, 134–146 (1995)

    Google Scholar 

  101. Vogel, A.: Nonlinear absorption: intraocular microsurgery and laser lithotripsy. Phys. Med. Biol. 42, 895–912 (1997)

    Google Scholar 

  102. Zhong, P., Tong, H.L., Cocks, F.H., Pearle, M.S., Preminger, G.M.: Transient cavitation and acoustic emission produced by different laser lithotripters. J. Endourol. 12, 371–378 (1998)

    Google Scholar 

  103. Vogel, A., Schweiger, P., Frieser, A., Asiyo, M.A., Birngruber, R.: Intraocular Nd:YAG laser surgery: Light-tissue interaction, damage range, and reduction of collateral effects. IEEE J. Quantum Electr. 26, 2240–2260 (1990)

    Google Scholar 

  104. Vogel, A., Capon, M.R.C., Asiyo-Vogel, A.N., Birngruber, R.: Intraocular Photodisruption with picosecond and nanosecond laser pulses: Tissue effects in cornea, lens, and retina. Invest. Ophthalm. Vis. Sci. 35, 3032–3044 (1994)

    Google Scholar 

  105. Rau, K.R., Guerra III, A., Vogel, A., Venugopalan, V.: Investigation of laser-induced cell lysis using time resolved imaging. Appl. Phys. Lett. 84, 2940–2942 (2004)

    Google Scholar 

  106. Rau, K.R., Quinto-Su, P.A., Hellman, A.N., Venugopalan, V.: Pulsed laser microbeam-induced cell lysis: Time-resolved imaging and analysis of hydrodynamic effects. Biophys. J. 91, 317–329 (2006)

    Google Scholar 

  107. Quinto-Su, P.A., Lai, H.H., Yoon, H.H., Sims, C.E., Allbritton, N.L., Venugopalan, V.: Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging. Lab Chip 8, 408–414 (2008)

    Google Scholar 

  108. Hellman, A.N., Rau, K.R., Yoon, H.H., Venugopalan, V.: Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. J. Biophoton 1, 24–35 (2008)

    Google Scholar 

  109. Hutson, M.S., Ma, X.: Plasma and cavitation dynamics during pulsed laser microsurgery in vivo. Phys. Rev. Lett. 99, 158104 (2007)

    Google Scholar 

  110. Stevenson, D.J., Gunn-Moore, F.J., Campbell, P., Dholakia, K.: Single cell optical transfection. J. R. Soc. Interface 7, 863–871 (2010)

    Google Scholar 

  111. Arita, Y., Torres-Mapa, M.L., Lee, W.M., Čišmár, T., Campbell, P., Gunn-Moore, F.J., Dholakia, K.: Spatially optimized gene transfection by laser-induced breakdown of optically trapped nanoparticles. Appl. Phys. Lett. 98, 093702-1–093702-3 (2011)

    Google Scholar 

  112. Hendijanifard, M., Willis, D.A.: An improved method to experimentally determine temperature and pressure behind laser-induced shock waves at low Mach numbers. J. Phys. D: Appl. Phys. 44, 145501-1–145501-6 (2011)

    Google Scholar 

  113. Müller, S., Bachmann, M., Kröninger, D., Kurz, T., Helluy, P.: Comparison and validation of compressible flow simulations of laser-induced bubbles. Comp. Fluids 38, 1850–1862 (2009)

    MATH  Google Scholar 

  114. Müller, S., Helluy, P., Ballmann, J.: Numerical simulation of a single bubble by compressible two-phase fluids. Int. J. Numer. Meth. Fluids 62, 591–631 (2010)

    MATH  Google Scholar 

  115. Geisler, R.: Untersuchungen zur laserinduzierten Kavitation mit Nanosekunden- und Femtosekundenlasern (Investigation of laser-induced cavitation with nanosecond and femtosecond lasers). Dissertation, University of Göttingen (2003) Universitätsverlag, Göttingen (2004) ISBN 3-930457-38-5

    Google Scholar 

  116. Toytman, I., Simanovski, D., Palanker, D.: Optical breakdown in transparent media with adjustable axial length and location. Opt. Express 18, 24688–24697 (2010)

    Google Scholar 

  117. Feng, Q., Moloney, J.V., Newell, A.C., Wright, E.M., Cook, K., Kennedy, P.K., Hammer, D.X., Rockwell, B.A., Thompson, C.R.: Theory and simulation on the threshold of water breakdown induced by focused ultrashort pulses. IEEE J. Quantum Electr. 33, 127–137 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Lauterborn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lauterborn, W., Vogel, A. (2013). Shock Wave Emission by Laser Generated Bubbles. In: Delale, C. (eds) Bubble Dynamics and Shock Waves. Shock Wave Science and Technology Reference Library, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34297-4_3

Download citation