An Automatic Race Track Generating System

  • Tai-Yun Chen
  • Hung-Wei Hsu
  • Wen-Kai Tai
  • Chin-Chen Chang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7624)


In this paper, we propose an automatic race track generating system based on difficulty evaluation and feature turns detection for providing users skill-matched contents. Given a start point, a goal point, and a difficulty expectation chart, our system ranks all candidate race tracks according to the similarity with respect to the given difficulty curve. Then, user can choose a satisfied track and export it into a racing car simulator to play.

The system automatically creates the racing line for the input race track. Then, the line is used to segment turns in the race track, and the corresponding ideal maximum speed variation is exploited to evaluate the difficulty by our proposed Turnscore formula. Also, the corresponding curvature chart of the racing line is encoded as a string and the characterized regular expression for feature turns is being matched in the string for identifying feature turns.

As the experimental results show, the feature turns detection is of high accuracy and the difficulty evaluation is reliable so that our system is effective to provide skill-matched race tracks for users.


Difficulty Evaluation Race Track Generation Racing Line String Searching Procedural Content Generation Feature Detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Open Street Map (June 2001),
  2. 2.
    Allianz Sponsoring Media Center (June 2005),
  3. 3.
    Wymann, B.: TORCS Robot Tutorial (February 24, 2005),
  4. 4.
    F1 Tracks for TORCS (June 2011),
  5. 5.
    Google Map (June 2011),
  6. 6.
    Hannan, J.: Interview to jeff hannan (2001),
  7. 7.
    Lecchi, S.: Artificial intelligence in racing games. In: 2009 IEEE Symposium on Computational Intelligence and Games, CIG 2009, p.1 (2009)Google Scholar
  8. 8.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: 1993 IEEE International Conference on Neural Networks, vol. 1, pp. 586–591 (1993)Google Scholar
  9. 9.
    Tollenaere, T.: SuperSAB: fast adaptive bacl propagation with good scaling properties. Neural Networks 3(5) (1990)CrossRefGoogle Scholar
  10. 10.
    Schiffmann, W., Joost, M., Werner, R.: Optimization of the Backpropagation Algorithm for Training Multilayer Perceptrons (1994)Google Scholar
  11. 11.
    Stern, D., Candela, J.Q., Herbrich, R., Graepel, T.: Playing machines: Machine learning applications in computer games. Microsoft Research Cambridge (2008)Google Scholar
  12. 12.
    TORCS Team. TORCS (The Open Racing Car Simulator) Official Site. Latest Version: TORCS 1.3.1 (May 2, 2010),
  13. 13.
    Coulom, R.: Reinforcement Learning Using Neural Networks, with Applications to Motor Control. PhD thesis, Institut National Polytechnique de Grenoble (2002)Google Scholar
  14. 14.
    Braghin, F., Cheli, F., Melzi, S., Sabbioni, E.: Race driver model. Computers and Structures 86(13-14), 1503–1516 (2008)CrossRefGoogle Scholar
  15. 15.
    Cardamone, L., Loiacono, D., Lanzi, P.L., Bardelli, A.P.: Searching for the Optimal Racing Line Using Genetic Algorithms. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 388–394 (August 2010)Google Scholar
  16. 16.
    Rubin, F.: Enumerating all simple paths in a graph. IEEE Transactions on Circuits and Systems 25, 641–642 (1978)MathSciNetCrossRefGoogle Scholar
  17. 17.
  18. 18.
    Chen, G., Esch, G., Wonka, P., Muller, P., Zhang, E.: Interactive Procedural Street Modeling. ACM Transactions on Graphics 27(3), 103:1–103:10 (2008)CrossRefGoogle Scholar
  19. 19.
    Galin, E., Peytavie, A., Marechal, N., Guerin, E.: Procedural Generation of Roads. Proceedings of Eurographics 29(2), 429–438 (2010)Google Scholar
  20. 20.
    The Official Formula One Website,
  21. 21.
    The Official APIGA Website,
  22. 22.
    Soper, H.E., Young, A.W., Cave, B.M., Lee, A., Pearson, K.: On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R. A. Fisher. Biometrika 11(4), 328–413 (1917)Google Scholar
  23. 23.
    Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS) 20, 422–446 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tai-Yun Chen
    • 1
    • 2
  • Hung-Wei Hsu
    • 1
    • 2
  • Wen-Kai Tai
    • 1
    • 2
  • Chin-Chen Chang
    • 1
    • 2
  1. 1.National Dong Hwa UniversityTaiwan
  2. 2.Nation United UniversityTaiwan

Personalised recommendations