A Temporal Logic with Mean-Payoff Constraints

  • Takashi Tomita
  • Shin Hiura
  • Shigeki Hagihara
  • Naoki Yonezaki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7635)


In the quantitative verification and synthesis of reactive systems, the states or transitions of a system are associated with payoffs, and a quantitative property of a behavior of the system is often characterized by the mean payoff for the behavior. This paper proposes an extension of LTL thatdescribes mean-payoff constraints. For each step of a behavior of a system, the payment depends on a system transition and a temporal property of the behavior. A mean-payoff constraint is a threshold condition for the limit supremum or limit infimum of the mean payoffs of a behavior. This extension allows us to describe specifications reflecting qualitative and quantitative requirements on long-run average of costs and the frequencies of satisfaction of temporal properties. Moreover, we develop an algorithm for the emptiness problems of multi-dimensional payoff automata with Büchi acceptance conditions and multi-threshold mean-payoff acceptance conditions. The emptiness problems are decided by solving linear constraint satisfaction problems, and the decision problems of our logic are reduced to the emptiness problems. Consequently, we obtain exponential-time algorithms for the model- and satisfiability-checking of the logic. Some optimization problems of the logic can also be reduced to linear programming problems.


LTL automata mean payoff formal verification decision problems specification optimization linear programming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Alur, R., Degorre, A., Maler, O., Weiss, G.: On Omega-Languages Defined by Mean-Payoff Conditions. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 333–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Andova, S., Hermanns, H., Katoen, J.P.: Discrete-Time Rewards Model-Checked. In: Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying Continuous Time Markov Chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model-checking algorithms for continuous-time markov chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefGoogle Scholar
  6. 6.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: On the Logical Characterisation of Performability Properties. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 780–792. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better Quality in Synthesis through Quantitative Objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Boker, U., Chatterjee, K., Henzinger, T., Kupferman, O.: Temporal specifications with accumulative values. In: LICS 2011, pp. 43–52 (2011)Google Scholar
  9. 9.
    Brázdil, T., Forejt, V., Kretínský, J., Kucera, A.: The satisfiability problem for probabilistic ctl. In: LICS 2008, pp. 391–402 (2008)Google Scholar
  10. 10.
    Černý, P., Chatterjee, K., Henzinger, T.A., Radhakrishna, A., Singh, R.: Quantitative Synthesis for Concurrent Programs. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 243–259. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-Payoff Automaton Expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Chatterjee, K., Doyen, L., Henzinger, T.A.: Quantitative Languages. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 385–400. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, K., Henzinger, T.A., Jobstmann, B., Singh, R.: Measuring and Synthesizing Systems in Probabilistic Environments. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 380–395. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Chatterjee, K., Majumdar, R., Henzinger, T.A.: Markov Decision Processes with Multiple Objectives. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 325–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Computer Science 380(1-2), 69–86 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)zbMATHCrossRefGoogle Scholar
  17. 17.
    Kupferman, O., Lustig, Y.: Lattice Automata. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 199–213. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190 (1989)Google Scholar
  19. 19.
    Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)Google Scholar
  20. 20.
  21. 21.
  22. 22.
    Tomita, T., Hagihara, S., Yonezaki, N.: A probabilistic temporal logic with frequency operators and its model checking. In: INFINITY 2011. EPTCS, vol. 73, pp. 79–93 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Takashi Tomita
    • 1
  • Shin Hiura
    • 2
  • Shigeki Hagihara
    • 1
  • Naoki Yonezaki
    • 1
  1. 1.Tokyo Institute of TechnologyTokyoJapan
  2. 2.NS Solutions CorporationTokyoJapan

Personalised recommendations