A Formal Model of Neuron That Provides Consistent Predictions

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 196)


We define maximal specific rules that avoid the problem of statistical ambiguity and provide predictions with maximum conditional probability. Also we define a special semantic probabilistic inference that learn these maximal specific rules and may be considered as a special case of Hebbian learning. This inference we present as a formal model of neuron and prove that this model provides consistent predictions.


neuron formal model Hebbian learning probabilistic inference 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vityaev, E.E.: Principals of brain activity, contained in the functional systems theory P.K. Anokhina and emotional theory of P.V.Siminova. Neouroinformatics 3(1), 25–78 (2008) (in Russian)Google Scholar
  2. 2.
    Vityaev, E.E.: Formal model of brain activity founded on prediction principle. In: Models of Cognitive Process, Novosibirsk. Computational Systems, Novosibirsk, vol. 164, pp. 3–62 (1998) (in Russian)Google Scholar
  3. 3.
    Demin, A.V., Vityaev, E.E.: Logical model of adaptive control system. Neouroinformatics 3(1), 79–107 (2008) (in Russian) Google Scholar
  4. 4.
    Hempel, C.G.: Maximal Specificity and Lawlikeness in Probabilistic Explanation. Philosophy of Science 35, 16–33 (1968)Google Scholar
  5. 5.
    Hebb, D.O.: The organization of behavior. A Neurophysiological Theory, 335 (1949)Google Scholar
  6. 6.
    Vityaev, E., Kovalerchuk, B.: Empirical Theories Discovery based on the Measurement Theory. Mind and Machine 14(4), 551–573 (2004)CrossRefGoogle Scholar
  7. 7.
    Vityaev, E.E.: The logic of prediction. In: Goncharov, S.S., Downey, R., Ono, H. (eds.) Mathematical Logic in Asia 2005, Proceedings of the 9th Asian Logic Conference, Novosibirsk, Russia, August 16-19, pp. 263–276. World Scientific (2006)Google Scholar
  8. 8.
    Vityaev, E.E., Smerdov, S.O.: New definition of prediction without logical inference. In: Kovalerchuk, B. (ed.) Proceedings of the IASTED International Conference on Computational Intelligence (CI 2009), Honolulu, Hawaii, USA, August 17-19, pp. 48–54 (2009)Google Scholar
  9. 9.
    Vityaev, E., Smerdov, S.: On the Problem of Prediction. In: Wolff, K.E., Palchunov, D.E., Zagoruiko, N.G., Andelfinger, U. (eds.) KONT 2007 and KPP 2007. LNCS (LNAI), vol. 6581, pp. 280–296. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Probabilistic models of cognition. Special Issue of the Journal: Trends in Cognitive Science 10(7), 287–344 (2006)Google Scholar
  11. 11.
    Chater, N., Oaksford, M. (eds.): The Probabilistic Mind. Prospects for Bayesian cognitive science, p. 536. Oxford University Press (2008)Google Scholar
  12. 12.
    Kovalerchuk, B.Y., Perlovsky, L.I.: Dynamic logic of phenomena and cognition. In: IJCNN 2008, pp. 3530–3537 (2008)Google Scholar
  13. 13.
    Vityaev, E., Kovalerchuk, B., Perlovsky, L., Smerdov, S.: Probabilistic Dynamic Logic of Phenomena and Cognition. In: WCCI 2010 IEEE World Congress on Computational Intelligence, CCIB, Barcelona, Spain, IJCNN, July 18-23, pp. 3361–3366 (2010) IEEE Catalog Number: CFP1OUS-DVD, ISBN: 978-1-4244-6917-8Google Scholar
  14. 14.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Kovalerchuk, B.Y., Perlovsky, L.I.: Data mining in finance: advances in relational and hybrid methods, p. 308. Kluwer Academic Publisher (2000)Google Scholar
  16. 16.
    Vityaev, E.E.: Knowledge discovery. Computational cognition. Cognitive process models, p. 293. Novosibirsk State University Press, Novosibirsk (2006) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of SciencesNovosibirsk State UniversityOblastRussia

Personalised recommendations