Skip to main content

Simulation and Anticipation as Tools for Coordinating with the Future

  • Conference paper
  • 1408 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 196))

Abstract

A key goal in designing an artificial intelligence capable of performing complex tasks is a mechanism that allows it to efficiently choose appropriate and relevant actions in a variety of situations and contexts. Nowhere is this more obvious than in the case of building a general intelligence, where the contextual choice and application of actions must be done in the presence of large numbers of alternatives, both subtly and obviously distinct from each other. We present a framework for action selection based on the concurrent activity of multiple forward and inverse models. A key characteristic of the proposed system is the use of simulation to choose an action: the system continuously simulates the external states of the world (proximal and distal) by internally emulating the activity of its sensors, adopting the same decision process as if it were actually operating in the world, and basing subsequent choice of action on the outcome of such simulations. The work is part of our larger effort to create new observation-based machine learning techniques. We describe our approach, an early implementation, and an evaluation in a classical AI problem-solving domain: the Sokoban puzzle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balleine, B.W., Dickinson, A.: Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37(4-5), 407–419 (1998)

    Article  Google Scholar 

  2. Cassimatis, N.L., Trafton, J.G., Bugajska, M.D., Schultz, A.C.: Integrating cognition, perception and action through mental simulation in robots. Robotics and Autonomous Systems 49(1-2), 13–23 (2004)

    Article  Google Scholar 

  3. Chella, A., Lebiere, C., Noelle, D., Samsonovich, A.: T on a roadmap to biologically inspired cognitive agents. In: Biologically Inspired Cognitive Architectures. Frontiers in Artificial Intelligence and Applications, vol. 233, pp. 453–460 (2011)

    Google Scholar 

  4. Damasio, A.R., Everitt, B.J., Bishop, D.: The somatic marker hypothesis and the possible functions of the prefrontal cortex [and discussion]. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351(1346), 1413–1420 (1996)

    Article  Google Scholar 

  5. Dindo, H., Chella, A., La Tona, G., Vitali, M., Nivel, E., Thórisson, K.R.: Learning Problem Solving Skills from Demonstration: An Architectural Approach. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 194–203. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Dor, D., Zwick, U.: Sokoban and other motion planning problems. Computational Geometry 13(4), 215–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gigliotta, O., Pezzulo, G., Nolfi, S.: Evolution of a predictive internal model in an embodied and situated agent. Theory in Biosciences (2011)

    Google Scholar 

  8. Grush, R.: The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences 27(03), 377–396 (2004)

    Google Scholar 

  9. Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends in Cognitive Sciences 6(6), 242–247 (2002)

    Article  Google Scholar 

  10. Jeannerod, M.: Neural simulation of action: A unifying mechanism for motor cognition. NeuroImage 14, S103–S109 (2001)

    Google Scholar 

  11. Junghanns, A., Schaeffer, J.: Sokoban: Enhancing general single-agent search methods using domain knowledge. Artificial Intelligence 129(1-2), 219–251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawato, M.: Internal models for motor control and trajectory planning. Current Opinion in Neurobiology 9, 718–727 (1999)

    Article  Google Scholar 

  13. Pezzulo, G.: Coordinating with the future: the anticipatory nature of representation. Minds and Machines 18(2), 179–225 (2008)

    Article  Google Scholar 

  14. Pezzulo, G.: A Study of Off-Line Uses of Anticipation. In: Asada, M., Hallam, J.C.T., Meyer, J.-A., Tani, J. (eds.) SAB 2008. LNCS (LNAI), vol. 5040, pp. 372–382. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Pezzulo, G., Butz, M.V., Castelfranchi, C.: The Anticipatory Approach: Definitions and Taxonomies. In: Pezzulo, G., Butz, M.V., Castelfranchi, C., Falcone, R. (eds.) The Challenge of Anticipation. LNCS (LNAI), vol. 5225, pp. 23–43. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Suddendorf, T., Corballis, M.C.: The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences 30(03), 299–313 (2007)

    Google Scholar 

  17. Szpunar, K.: Episodic future thought an emerging concept. Perspectives on Psychological Science 5(2), 142–162 (2010)

    Article  Google Scholar 

  18. Thórisson, K.R.: From constructionist to constructivist A.I. Keynote. In: AAAI Fall Symposium Series: Biologically Inspired Cognitive Architectures, Washington D.C. Also available as AAAI Tech. Report FS-09-01, pp. 175–183. AAAI Press, Menlo Park (2009)

    Google Scholar 

  19. Toussaint, M.: A sensorimotor map: Modulating lateral interactions for anticipation and planning. Neural Computation 18(5), 1132–1155 (2006)

    Article  MATH  Google Scholar 

  20. Wolpert, D., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  21. Ziemke, T., Jirenhed, D.A., Hesslow, G.: Internal simulation of perception: a minimal neuro-robotic model. Neurocomputing 68, 85–104 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haris Dindo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dindo, H., La Tona, G., Nivel, E., Pezzulo, G., Chella, A., Thórisson, K.R. (2013). Simulation and Anticipation as Tools for Coordinating with the Future. In: Chella, A., Pirrone, R., Sorbello, R., Jóhannsdóttir, K. (eds) Biologically Inspired Cognitive Architectures 2012. Advances in Intelligent Systems and Computing, vol 196. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34274-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34274-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34273-8

  • Online ISBN: 978-3-642-34274-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics