Advertisement

A Game-Theoretical Approach to Image Segmentation

  • Jing Li
  • Gang Zeng
  • Rui Gan
  • Hongbin Zha
  • Long Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

This paper describes a novel algorithm for image segmentation within the framework of evolutionary game theory. Beyond the pairwise model, our objective function enables exploration on larger patches by introducing clique probability, and enforcing pixels within clique be assigned the same label. By combining the Public Goods Game, our algorithm can efficiently solve the multi-label segmentation problem. Experiments on challenging datasets demonstrate that our algorithm outperforms the state-of-art. We believe that this algorithm can be extended to many other labeling problems.

Keywords

segmentation evolutionary game theory Public Goods Game 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. PAMI 23(11), 1222–1239 (2001) 1CrossRefGoogle Scholar
  2. 2.
    Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph cuts? PAMI 26(2), 147–159 (2004) 1CrossRefGoogle Scholar
  3. 3.
    Kohli, P., Kumar, M., Torr, P.: P3 & beyond: Solving energies with higher order cliques. In: CVPR, pp. 1–8. IEEE (2007) 1Google Scholar
  4. 4.
    Kohli, P., Ladicky, L., Torr, P.: Graph cuts for minimizing robust higher order potentials. In: CVPR (2008) 1Google Scholar
  5. 5.
    Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for enforcing label consistency. IJCV 82(3), 302–324 (2009) 1CrossRefGoogle Scholar
  6. 6.
    Rother, C., Kohli, P., Feng, W., Jia, J.: Minimizing sparse higher order energy functions of discrete variables. In: CVPR, pp. 1382–1389. IEEE (2009) 1Google Scholar
  7. 7.
    Tarlow, D., Givoni, I., Zemel, R.: Hopmap: Efficient message passing with high order potentials. In: AISTATS (2010) 1Google Scholar
  8. 8.
    Lan, X., Roth, S., Huttenlocher, D.P., Black, M.J.: Efficient Belief Propagation with Learned Higher-Order Markov Random Fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 269–282. Springer, Heidelberg (2006) 1CrossRefGoogle Scholar
  9. 9.
    Komodakis, N., Paragios, N.: Beyond pairwise energies: Efficient optimization for higher-order mrfs. In: CVPR, pp. 2985–2992. IEEE (2009) 1Google Scholar
  10. 10.
    Ladicky, L., Russell, C., Kohli, P., Torr, P.: Associative hierarchical crfs for object class image segmentation. In: ICCV, pp. 739–746. IEEE (2009) 1Google Scholar
  11. 11.
    Bleyer, M., Rother, C., Kohli, P.: Surface stereo with soft segmentation. In: CVPR, pp. 1570–1577. IEEE (2010) 1Google Scholar
  12. 12.
    Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.: Object stereo - joint stereo matching and object segmentation. In: CVPR, pp. 3081–3088. IEEE (2011) 1Google Scholar
  13. 13.
    Santos, F., Santos, M., Pacheco, J.: Social diversity promotes the emergence of cooperation in public goods games. Nature 454(7201), 213–216 (2008) 2, 3CrossRefGoogle Scholar
  14. 14.
    Lieberman, E., Hauert, C., Nowak, M.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005) 2CrossRefGoogle Scholar
  15. 15.
    Santos, F., Pacheco, J.: Scale-free networks provide a unifying framework for the emergence of cooperation. PRL 95, 98104 (2005) 2CrossRefGoogle Scholar
  16. 16.
    Santos, F., Pacheco, J., Lenaerts, T.: Evolutionary dynamics of social dilemmas in structured heterogeneous populations. PNAS 103, 3490 (2006) 2CrossRefGoogle Scholar
  17. 17.
    Rong, Z., Yang, H., Wang, W.: Feedback reciprocity mechanism promotes the cooperation of highly clustered scale-free networks. PRE 82, 047101 (2010) 2CrossRefGoogle Scholar
  18. 18.
    Wang, J., Wu, B., Chen, X., Wang, L.: Evolutionary dynamics of public goods games with diverse contributions in finite populations. PRE 81(5), 056103 (2010) 3CrossRefGoogle Scholar
  19. 19.
    Zhong, L., Chen, B., Huang, C.: Networking effects on public goods game with unequal allocation. In: ICNC, vol. 1, pp. 217–221. IEEE (2008) 3Google Scholar
  20. 20.
    Peng, D., Yang, H., Wang, W., Chen, G., Wang, B.: Promotion of cooperation induced by nonuniform payoff allocation in spatial public goods game. EPJ B 73(3), 455–459 (2010) 3zbMATHCrossRefGoogle Scholar
  21. 21.
    Watts, D.: A twenty-first century science. Nature 445(7127), 489–489 (2007) 3CrossRefGoogle Scholar
  22. 22.
    Ohtsuki, H., Nowak, M., Pacheco, J.: Breaking the symmetry between interaction and replacement in evolutionary dynamics on graphs. PRL 98(10), 108106 (2007) 3CrossRefGoogle Scholar
  23. 23.
    Li, J., Wu, T., Zeng, G., Wang, L.: Selective investment promotes cooperation in public goods game. Physica A (2012) 3Google Scholar
  24. 24.
    Alpert, S., Galun, M., Basri, R., Brandt, A.: Image segmentation by probabilistic bottom-up aggregation and cue integration. In: CVPR (June 2007) 6, 7Google Scholar
  25. 25.
    Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L.: Dynamic 3d scene analysis from a moving vehicle. In: CVPR, pp. 1–8. IEEE (2007) 6Google Scholar
  26. 26.
    Google street view, https://maps.google.com/ 6

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jing Li
    • 1
  • Gang Zeng
    • 1
  • Rui Gan
    • 1
  • Hongbin Zha
    • 1
  • Long Wang
    • 1
  1. 1.Key Laboratory of Machine PerceptionPeking UniversityBeijingChina

Personalised recommendations