Advertisement

2D-Line-Drawing-Based 3D Object Recognition

  • Yong-Jin Liu
  • Qiu-Fang Fu
  • Ye Liu
  • Xiao-Lan Fu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

3D object recognition has attracted considerable research in computer vision and computer graphics. In this paper, we draw attentions from neurophysiological research that line drawings trigger a neural response similar to natural color images, and propose a line-drawing-based 3D object recognition method. The contribution of the proposed method includes a feature defined for line drawings and a similarity metric for object recognition. Experimental results on McGill 3D shape benchmark show that the proposed method has the best performance when compared to five classic 3D object recognition methods.

Keywords

Object Recognition Line Drawing Black Pixel Feature Histogram Good Recognition Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press (1999)Google Scholar
  2. 2.
    Elbaz, A., Kimmel, R.: On bending invariant signatures for surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 1285–1295 (2003)CrossRefGoogle Scholar
  3. 3.
    Frey, B., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3D models. ACM Trans. Graphics 22, 83–105 (2003)CrossRefGoogle Scholar
  5. 5.
    Haxby, J., Gobbini, I., Furey, M., Ishai, A., Schouten, J., Pietrini, P.: Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001)CrossRefGoogle Scholar
  6. 6.
    Horn, B.: Extended Guassian images. Proc. IEEE 72, 1671–1686 (1984)CrossRefGoogle Scholar
  7. 7.
    Johnson, A., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 433–449 (1999)CrossRefGoogle Scholar
  8. 8.
    Kang, H., Lee, S., Chui, C.: Coherent Line Drawing. In: ACM Symp. Non-Photorealistic Animation and Rendering, pp. 43–50 (2007)Google Scholar
  9. 9.
    Liu, Y., Chen, Z., Tang, K.: Construction of iso-contours, bisectors, and Voronoi diagrams on triangulated surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 33, 1502–1517 (2011)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Zheng, Y., Lv, L., Xuan, Y., Fu, X.: 3D Model retrieval based on color+geometry signatures. The Visual Computer 28, 75–86 (2012)CrossRefGoogle Scholar
  11. 11.
    McGill 3D Shape Benchmark, http://www.cim.mcgill.ca/~shape/benchMark/
  12. 12.
    Simoncelli, E., Olshausen, B.: Natural image statistics and neural representation. Annual Review of Neurosicnece 24, 1193–1216 (2001)CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Luo, X., Xuan, Y., Chen, W., Fu, X.: Image retargeting quality assessment. Computer Graphics Forum (Regular Issue of Eurographics 2011) 30, 583–592 (2011)CrossRefGoogle Scholar
  14. 14.
    Walther, D., Chai, B., Caddigan, E., Beck, D., Fei-Fei, L.: Simple line drawings suffice for functional MRI decoding of natural scene categories. Proceedings of the National Academy of Sciences, USA 108, 9661–9666 (2011)CrossRefGoogle Scholar
  15. 15.
    Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1334–1339 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yong-Jin Liu
    • 1
  • Qiu-Fang Fu
    • 2
  • Ye Liu
    • 2
  • Xiao-Lan Fu
    • 2
  1. 1.TNList, Department of Computer Science and TechnologyTsinghua UniversityBeijingChina
  2. 2.State Key Lab of Brain and Cognitive Science, Institute of PsychologyChinese Academy of SciencesBeijingChina

Personalised recommendations