Advertisement

Constrained Texture Mapping on Subdivision Surfaces

  • Yanlin Weng
  • Dongping Li
  • Yiying Tong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7633)

Abstract

We propose a texture mapping technique that allows user to directly manipulate texture coordinates of subdivision surfaces through adding feature correspondences. After features, or constraints, are specified by user on the subdivision surface, the constraints are projected back to the control mesh and a Polygon Matching/Embedding algorithm is performed to generate polygon regions that embed texture coordinates of control mesh into different regions. After this step, some Steiner points are added to the control mesh. The generated texture coordinates exactly satisfy the input constraints but with high distortions. Then a constrained smoothing algorithm is performed to minimize distortions of the subdivision surface via updating texture coordinates of the control mesh. Finally, an Iterative Closest Point (ICP)-based deformation algorithm is performed to remove subdivision errors caused by the added Steiner points.

Keywords

Parameterization hard constraints subdivision surfaces texture mapping mesh deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Catmull, E., Clark, J.: Seminal graphics: Recursively generated B-spline surfaces on arbitrary topological meshes. ACM, New York (1998)Google Scholar
  2. 2.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 317–324. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  3. 3.
    Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, pp. 173–182. ACM, New York (1995)Google Scholar
  4. 4.
    Eckstein, I., Surazhsky, V., Gotsman, C.: Texture Mapping with Hard Constraints. Computer Graphics Forum 20, 95–104 (2001)CrossRefGoogle Scholar
  5. 5.
    Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces. In: ACM SIGGRAPH 2005 Courses. ACM, New York (2005)Google Scholar
  6. 6.
    He, L., Schaefer, S., Hormann, K.: Parameterizing subdivision surfaces. ACM Trans. Graph. 29, 120:1–120:6 (2010)CrossRefGoogle Scholar
  7. 7.
    Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: theory and practice. In: ACM SIGGRAPH 2007 Courses. ACM, New York (2007)Google Scholar
  8. 8.
    Kraevoy, V., Sheffer, A., Gotsman, C.: Matchmaker: constructing constrained texture maps. ACM Trans. Graph. 22, 326–333 (2003)CrossRefGoogle Scholar
  9. 9.
    Lévy, B.: Constrained texture mapping for polygonal meshes. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM, New York (2001)Google Scholar
  10. 10.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least Squares Conformal Maps for Automatic Texture Atlas Generation. In: ACM SIGGRAPH Conference Proceedings (2002)Google Scholar
  11. 11.
    Ligang, L., Lei, Z., Yin, X., Craig, G., Steven, J.G.: A Local/Global Approach to Mesh Parameterization, pp. 1495–1504. The Eurographics Association and Blackwell Publishing Ltd., Copenhagen (2008)Google Scholar
  12. 12.
    Loop, C.: Smooth Subdivision Surfaces Based on Triangles. Master thesis, University of Utah (1987)Google Scholar
  13. 13.
    Tutte, W.T.: Convex representations of graphs. Proc. Lond. Math. Soc. 10, 304–320 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ulrich, P., Strasse Des, J., Konrad, P.: Computing Discrete Minimal Surfaces and Their Conjugates. Experimental Mathematics 2, 15–36 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Zhou, K., Huang, X., Xu, W., Guo, B., Shum, H.: Direct manipulation of subdivision surfaces on GPUs. ACM Trans. Graph. 26 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yanlin Weng
    • 1
  • Dongping Li
    • 1
  • Yiying Tong
    • 2
  1. 1.Zhejiang UniversityHangzhouChina
  2. 2.Michigan State UniversityEast LansingUSA

Personalised recommendations