Skip to main content

Piezotronic Electromechanical Memories

  • Chapter
Piezotronics and Piezo-Phototronics

Part of the book series: Microtechnology and MEMS ((MEMS))

  • 2915 Accesses

Abstract

In this chapter, we treat the piezoelectrically modulated resistive switching device based on a piezotronic nanowire, through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)

    Article  CAS  Google Scholar 

  2. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6), 28–36 (2008)

    Article  CAS  Google Scholar 

  3. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  CAS  Google Scholar 

  4. J.J. Yang, M.D. Pickett, X.M. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)

    Article  CAS  Google Scholar 

  5. B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005)

    Article  Google Scholar 

  6. S.H. Jo, K.H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9(2), 870–874 (2009)

    Article  CAS  Google Scholar 

  7. D.B. Strukov, K.K. Likharev, Prospects for terabit-scale nanoelectronic memories. Nanotechnology 16(1), 137–148 (2005)

    Article  Google Scholar 

  8. Q.F. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X.M. Li, W.M. Tong, D.B. Strukov, G.S. Snider, G. Medeiros-Ribeiro, R.S. Williams, Memristor—CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    Article  CAS  Google Scholar 

  9. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)

    Article  CAS  Google Scholar 

  10. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    Article  CAS  Google Scholar 

  11. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)

    Article  CAS  Google Scholar 

  12. J. Chen, W. Wang, M.A. Reed, A.M. Rawlett, D.W. Price, J.M. Tour, Room-temperature negative differential resistance in nanoscale molecular junctions. Appl. Phys. Lett. 77(8), 1224–1226 (2000)

    Article  CAS  Google Scholar 

  13. A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, C.W. Chu, Field-driven hysteretic and reversible resistive switch at the AgPr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83(5), 957–959 (2003)

    Article  CAS  Google Scholar 

  14. Y.J. Dong, G.H. Yu, M.C. McAlpine, W. Lu, C.M. Lieber, Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8(2), 386–391 (2008)

    Article  CAS  Google Scholar 

  15. S. Seo, M.J. Lee, D.H. Seo, E.J. Jeoung, D.S. Suh, Y.S. Joung, I.K. Yoo, I.R. Hwang, S.H. Kim, I.S. Byun, J.S. Kim, J.S. Choi, B.H. Park, Reproducible resistance switching in polycrystalline NiO films. Appl. Phys. Lett. 85(23), 5655–5657 (2004)

    Article  CAS  Google Scholar 

  16. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4), 312–320 (2006)

    Article  CAS  Google Scholar 

  17. Z.L. Wang, Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today 5, 540–552 (2010)

    Article  Google Scholar 

  18. W.Z. Wu, Z.L. Wang, Piezotronic nanowire-based resistive switches as programmable electromechanical memories. Nano Lett. 11(7), 2779–2785 (2011)

    Article  CAS  Google Scholar 

  19. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  CAS  Google Scholar 

  20. Z.L. Wang, Toward self-powered sensor networks. Nano Today 5(6), 512–514 (2010)

    Article  Google Scholar 

  21. W.Z. Wu, Y.G. Wei, Z.L. Wang, Strain-gated piezotronic logic nanodevices. Adv. Mater. 22(42), 4711–4715 (2010)

    Article  CAS  Google Scholar 

  22. J.C. Scott, Is there an immortal memory? Science 304(5667), 62–63 (2004)

    Article  CAS  Google Scholar 

  23. E. Linn, R. Rosezin, C. Kugeler, R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5), 403–406 (2010)

    Article  CAS  Google Scholar 

  24. M.W. Allen, S.M. Durbin, Influence of oxygen vacancies on Schottky contacts to ZnO. Appl. Phys. Lett. 92(12), 12210 (2008)

    Article  Google Scholar 

  25. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts (Clarendon, Oxford, 1988)

    Google Scholar 

  26. L. Schmidt-Mendem, J.L. MacManus-Driscoll, ZnO-nanostructures, defects, and devices. Mater. Today 10(5), 40–48 (2007)

    Article  Google Scholar 

  27. J. Zhou, P. Fei, Y.D. Gu, W.J. Mai, Y.F. Gao, R.S. Yang, G. Bao, Z.L. Wang, Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. Nano Lett. 8(11), 3973–3977 (2008)

    Article  CAS  Google Scholar 

  28. Z.Y. Zhang, K. Yao, Y. Liu, C.H. Jin, X.L. Liang, Q. Chen, L.M. Peng, Quantitative analysis of current–voltage characteristics of semiconducting nanowires: decoupling of contact effects. Adv. Funct. Mater. 17(14), 2478–2489 (2007)

    Article  CAS  Google Scholar 

  29. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  30. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals, 2nd edn. (Clarendon, Oxford, 1948)

    Google Scholar 

  31. K.W. Chung, Z. Wang, J.C. Costa, F. Williamsion, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59(10), 1191 (1991)

    Article  CAS  Google Scholar 

  32. W.H. Liu, M.B. Lee, L. Ding, J. Liu, Z.L. Wang, Piezopotential gated nanowire–nanotube hybrid field-effect transistor. Nano Lett. 10(8), 3084–3089 (2010)

    Article  CAS  Google Scholar 

  33. Y. Zhang, Y.F. Hu, S. Xiang, Z.L. Wang, Effects of piezopotential spatial distribution on local contact dictated transport property of ZnO micro/nanowires. Appl. Phys. Lett. 97(3), 033509 (2010)

    Article  Google Scholar 

  34. Y.F. Gao, Z.L. Wang, Equilibrium potential of free charge carriers in a bent piezoelectric semiconductive nanowire. Nano Lett. 9(3), 1103–1110 (2009)

    Article  CAS  Google Scholar 

  35. L. Cao, T.S. Kim, S.C. Mantell, D.L. Polla, Simulation and fabrication of piezoresistive membrane type MEMS strain sensors. Sens. Actuators A, Phys. 80(3), 273–279 (2000)

    Article  Google Scholar 

  36. E. Mile, G. Jourdan, L. Duraffourg, S. Labarthe, C. Marcoux, D. Mercier, P. Robert, P. Andreucci, Sensitive in plane motion detection of NEMS through semiconducting (p+) piezoresistive gauge transducers. IEEE Sens. J. 1(3), 1286–1289 (2009)

    Article  Google Scholar 

  37. Y.G. Wei, W.Z. Wu, R. Guo, D.J. Yuan, S.M. Das, Z.L. Wang, Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. Nano Lett. 10(9), 3414–3419 (2010)

    Article  CAS  Google Scholar 

  38. K. Boahen, Neuromorphic microchips. Sci. Am. 292(5), 56–63 (2005)

    Article  CAS  Google Scholar 

  39. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Z.L. (2012). Piezotronic Electromechanical Memories. In: Piezotronics and Piezo-Phototronics. Microtechnology and MEMS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34237-0_6

Download citation

Publish with us

Policies and ethics