Advertisement

Automatic Fusion of Digital Images and Laser Scanner Data for Heritage Preservation

  • Wassim Moussa
  • Mohammed Abdel-Wahab
  • Dieter Fritsch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7616)

Abstract

This paper presents an automatic procedure for combining digital images and laser scanner data in order to have a full representation of a scene. In particular, this procedure will serve photogrammetric close range applications such as 3D digital preservation and documentation of cultural heritages by generating comprehensive virtual reality models. Our method is based on a bundle block adjustment for the orientation estimation of generated images from laser data and camera images by means of an optimized Structure from Motion reconstruction method. This results in having target-free registration of multiple laser scans and absolute image orientations. The proposed pipeline was tested on a real case study and experimental results are shown to demonstrate the effectiveness of the presented approach.

Keywords

Fusion Cultural Heritage Preservation Laser scanning Close Range Photogrammetry Registration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kacyra, B.: CyArk 500 – 3D Documentation of 500 Important Cultural Heritage Sites. In: Fritsch, D. (ed.) Photogrammetric Week 2009, pp. 315–320. Wichmann, Heidelberg (2009)Google Scholar
  2. 2.
    Fritsch, D., Khosravani, A.M., Cefalu, A., Wenzel, K.: Multi-Sensors and Multiray Reconstruction for Digital Preservation. In: Fritsch, D. (ed.) Photogrammetric Week 2011, pp. 305–323. Wichmann, Berlin/Offenbach (2011)Google Scholar
  3. 3.
    Liu, L., Stamos, I., Yu, G., Wolberg, G., Zokai, S.: Multiview geometry for texture mapping 2d images onto 3d range data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2293–2300 (2006)Google Scholar
  4. 4.
    Abdelhafiz, A.: Integrating Digital Photogrammetry and Laser Scanning, PhD Thesis, Deutsche Geodätische Kommission, München, pp. 55–82 (2009)Google Scholar
  5. 5.
    El-Hakim, S.F., Beraldin, J.-A.: On the Integration of Range and Intensity Data to Improve Vision-Based Three-Dimensional Measurement. In: Proceeding of SPIE, Videometric III, vol. 2350, pp. 306–327 (1994)Google Scholar
  6. 6.
    Alba, M., Barazzetti, L., Scaioni, M., Remondino, F.: Automatic registration of multiple laser scans using panoramic RGB and intensity data. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38(5/W12); Int. Conference “Laser Scanning 2011”, Calgary, Canada, 6 pages (2011)Google Scholar
  7. 7.
    Yanga, M.Y., Cao, Y., McDonald, J.: Fusion of camera images and laser scans for wide baseline 3D scene alignment in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing 66(6), 52–61 (2011)CrossRefGoogle Scholar
  8. 8.
    El-Hakim, S., Beraldin, J.-A., Picard, M., Vettore, A.: Effective 3D modeling of heritage sites. In: 4th Int. Conf. 3D Imaging and Modeling (3DIM 2003), Banff, Canada, pp. 302–309 (2003c)Google Scholar
  9. 9.
    Nex, F., Remondino, F.: Range and image data integration for man-made object recontruction. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38(3/W22), on CD-Rom; ISPRS Int. Conference Photogrammetric Image Analysis (PIA 2011), Munich, Germany, pp. 149–154 (2011)Google Scholar
  10. 10.
    Alshawabkeh, Y.: Integration of Laser Scanning and Photogrammetry for Heritage Documentation. PhD Thesis, Universität Stuttgart, pp. 66–82 (2006)Google Scholar
  11. 11.
    Moussa, W., Abdel-Wahab, M., Fritsch D.: An Automatic Procedure for Combining Digital Images and Laser Scanner Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B5; XXII ISPRS Congress, Melbourne, Australia, pp. 229–234 (2012) Google Scholar
  12. 12.
    Teschauer, O.: Kloster Hirsau: Ein Kurzführer, Große Kreisstadt Calw, Staatliches Liegenschaftsamt Karlsruhe, Außenstelle Calw. In: Verbindung mit der Oberfinanzdirektion Karlsruhe, pp. 6–38 (1991)Google Scholar
  13. 13.
    Moussa, W., Fritsch, D.: A Simple Approach to Link 3D Photorealistic Models with Content of Bibliographic Repositories. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 482–491. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Muja, M., Lowe, D.G.: Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. In: VISAPP International Conference on Computer Vision Theory and Applications, pp. 331–340 (2009)Google Scholar
  15. 15.
    Vedaldi, A., Fulkerson, B.: VLFeat: An Open and Portable Library of Computer Vision Algorithms. In: Proceedings of the 18th Annual ACM International Conference on Multimedia, pp. 1469–1472 (2010), http://www.vlfeat.org (accessed February 27, 2012)
  16. 16.
    Abdel-Wahab, M., Wenzel, K., Fritsch D.: Efficient Reconstruction of Large Unordered Image Datasets for High Accuracy Photogrammetric Applications. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences I-3; XXII ISPRS Congress, Melbourne, Australia, pp. 1–6 (2012) Google Scholar
  17. 17.
    Hirschmüller, H.: Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 328–341 (2008)CrossRefGoogle Scholar
  18. 18.
    Wenzel, K., Abdel-Wahab, M., Cefalu, A., Fritsch D.: High-Resolution Surface Reconstruction from Imagery for Close Range Culture Heritage Applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B5; XXII ISPRS Congress, Melbourne, Australia, pp. 133–138 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wassim Moussa
    • 1
  • Mohammed Abdel-Wahab
    • 1
  • Dieter Fritsch
    • 1
  1. 1.Institute for Photogrammetry (ifp)University of StuttgartStuttgartGermany

Personalised recommendations