Image-Based Low-Cost Systems for Automatic 3D Recording and Modelling of Archaeological Finds and Objects

  • Thomas P. Kersten
  • Maren Lindstaedt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7616)


In most cases archaeological finds and objects remain in the country of origin. Thus, for potential users away from that location, 3D models of archaeological finds and objects form an increasingly important resource since they can be analysed and visualised in efficient databases using web-based tools over the Internet. Since typical 3D recording technologies for archaeological objects, such as terrestrial laser scanning or fringe projection systems, are still expensive, cumbersome, inconvenient, and often require expert knowledge, camera-based systems offer a cost-effective, simple and flexible alternative that can be immediately implemented. This paper will demonstrate how the geometry and texture of archaeological finds and objects can be automatically constructed, modelled and visualized from digital imagery using freely-available open-source software or web services. The results of several objects derived from different tested software packages and/or services are compared with reference data in order to analyse the accuracy and reliability of such objects.


3D archaeological automation comparison finds modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barazzetti, L., Remondino, F., Scaioni, M.: Combined use of photogrammetric and computer vision techniques for fully automated and accurate 3D modeling of terrestrial objects. In: Proceedings of SPIE Optics+Photonics, San Diego, CA, USA, August 2-3, vol. 7447 (2009)Google Scholar
  2. 2.
    Opitz, R., Simon, K., Barnes, A., Fisher, K., Lippiello, L.: Close-range photogrammetry vs. 3D scanning: Comparing data capture, processing and model generation in the field and the lab. In: The Computer Applications and Quantitative Methods in Archaeology (CAA) 2012 Conference (2012)Google Scholar
  3. 3.
    Kersten, T., Lindstaedt, M.: Automatic 3D Object Reconstruction from Multiple Images for Architectural, Cultural Heritage and Archaeological Applications Using Open-Source Software and Web Services. Photogrammetrie, Fernerkundung, Geoinformation (PFG) (6), (in press, 2012) Google Scholar
  4. 4.
    Doneus, M., Verhoeven, G., Fera, M., Briese, C., Kucera, M., Neubauer, W.: From deposit to point cloud – A study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. In: XXIIIrd International CIPA Symposium on Geoinformatics 6, pp. 81–88 (2011),
  5. 5.
    Neitzel, F., Klonowski, J.: Mobile 3D Mapping With a Low-cost UAV System on Example of a Landfill Survey. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-1/C22 (2011),
  6. 6.
    Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the World from Internet Photo Collections. Int. J. Comput. Vision 80(2), 189–210 (2008)CrossRefGoogle Scholar
  7. 7.
    Furukawa, Y., Ponce, J.: Accurate, Dense, and Robust Multi-View Stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1362–1376 (2010)CrossRefGoogle Scholar
  8. 8.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics 25(3), 835–846 (2006)CrossRefGoogle Scholar
  9. 9.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  10. 10.
    Lourakis, M.I.A., Argyros, A.A.: Design and Implementation of a Generic Sparse Bundle Adjustment Software Package Based on the Levenberg-Marquardt Algorithm. Institute of Computer Science, Heraklion, Crete, Greece - FORTH-ICS, Tech. Rep. 340 (2004), (accessed April 30, 2012)
  11. 11.
    Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Scarano, V., De Chiara, R., Erra, U. (eds.) Eurographics Italian Chapter Conference, pp. 129–136. The Eurographics Association (2008)Google Scholar
  12. 12.
    Wu, C.: SiftGPU: A GPU implementation of Scale Invariant Feature Transform, SIFT (2007), (accessed April 30, 2012)
  13. 13.
    Wu, C.: VisualSFM: A Visual Structure from Motion System (2011), (accessed April 30, 2012)
  14. 14.
    Abate, D., Furini, G., Migliori, S., Pierattini, S.: Project Photofly: New 3D Modelling Online WEB Service. Int. Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 38(5/W16) (2011), (accessed April 30, 2012)
  15. 15.
    Courchay, J., Pons, J.-P., Monasse, P., Keriven, R.: Dense and Accurate Spatio-temporal Multi-view Stereovision. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II. LNCS, vol. 5995, pp. 11–22. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Thomas P. Kersten
    • 1
  • Maren Lindstaedt
    • 1
  1. 1.Photogrammetry & Laser Scanning LabHafenCity University HamburgHamburgGermany

Personalised recommendations