Skip to main content

Recommendation of Mobile Services Employing Semantics and Community Generated Data

  • Conference paper
Business Information Systems Workshops (BIS 2012)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 127))

Included in the following conference series:

  • 1372 Accesses


The number of online services is growing dramatically. Nowadays they can be semantic or Web 2.0 based, for fixed or mobile device consumption, end-user or provider created, oriented on specific user groups, social networks, etc. Therefore, selection and recommendation of services for the end users on the basis of the service and user data becomes a challenge, and conventional keyword-based information retrieval are no longer sufficient. Here we present an approach for effective selection and recommendation of heterogeneous online services, combining natural language based information retrieval techniques and analysis of semantic annotation, community-generated Web 2.0 type content and location awareness data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Aciar, S., Zhang, D., Simoff, S., Debenham, J.: Informed Recommender: Basing Recommendations on Consumer Product Reviews. In: IEEE Intelligent Systems, pp. 39–47. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  2. Arabshian, K.: A framework for personalized context-aware search of ontology-based tagged data. In: Proceedings of the 2010 IEEE International Conference on Services Computing, SCC 2010, pp. 649–650. IEEE Computer Society, Washington, DC (2010),

    Chapter  Google Scholar 

  3. Auer, S., Bizer, C., Müller, C., Zhdanova, A.: The social semantic web. Lecture Notes in Informatics (LNI), vol. 113. Bonner Köllen Verlag (September 2007)

    Google Scholar 

  4. Bell, R.M., Koren, Y., Volinsky, C.: The bellkor 2008 solution to the netflix prize. Seminars in Laparoscopic Surgery 9(4), 197–197 (2008),

    Google Scholar 

  5. Cao, H., Jiang, D., Pei, J., Chen, E., Li, H.: Towards context-aware search by learning a very large variable length hidden markov model from search logs. In: Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp. 191–200. ACM, New York (2009),

    Chapter  Google Scholar 

  6. Danado, J., Davies, M., Ricca, P., Fensel, A.: An Authoring Tool for User Generated Mobile Services. In: Berre, A.J., Gómez-Pérez, A., Tutschku, K., Fensel, D. (eds.) FIS 2010. LNCS, vol. 6369, pp. 118–127. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Häkkilä, J., Korpipää, P., Ronkainen, S., Tuomela, U.: Interaction and End-User Programming with a Context-Aware Mobile Application. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 927–937. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Hattori, S., Tezuka, T., Tanaka, K.: Context-aware query refinement for mobile web search. In: IEEE/IPSJ International Symposium on Applications and the Internet Workshops, p. 15 (2007)

    Google Scholar 

  9. (Information, I., Technlogies), C.: m:Ciudad FP7. (Online; accessed April 28, 2011)

  10. Kaasinen, E.: User needs for location-aware mobile services. Personal Ubiquitous Comput. 7, 70–79 (2003),

    Article  Google Scholar 

  11. Mirza, B.J., Keller, B.J., Ramakrishnan, N.: Studying recommendation algorithms by graph analysis. Journal of Intelligent Information Systems 20(2), 131–160 (2003),

    Article  Google Scholar 

  12. Polyviou, S., Evripidou, P., Samaras, G.: Contextaware queries using query by browsing and chiromancer. In: Second International Conference on Pervasive Computing (2004)

    Google Scholar 

  13. Shin, Y., Yu, C., Chung, S., Kim, S.: End-user driven service creation for converged service of telecom and internet. In: Fourth Advanced International Conference on Telecommunications, AICT 2008, pp. 71–76 (June 2008)

    Google Scholar 

  14. W3C: RDF Schema, (Online; accessed August 04, 2010)

  15. Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., Li, H.: Context-aware ranking in web search. In: Proceeding of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2010, pp. 451–458. ACM, New York (2010),

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oberhauser, A., Stanciu, CV., Fensel, A. (2012). Recommendation of Mobile Services Employing Semantics and Community Generated Data. In: Abramowicz, W., Domingue, J., Węcel, K. (eds) Business Information Systems Workshops. BIS 2012. Lecture Notes in Business Information Processing, vol 127. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34227-1

  • Online ISBN: 978-3-642-34228-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics